Advertisement

Path Algebra and Algorithms

  • M. Gondran
Part of the NATO Advanced Study Institutes Series book series (ASIC, volume 19)

Abstract

The object of the paper is the study of graph problems involving paths or routing.

As a result of the introduction of a very general algebraic structure, most of these problems will be unified into a common presentation. Moreover it will generalize the results of authors having investigated this topic and thus solve a few new problems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bellman R., “On a routing problem”, Quart. Appl. Math., 16 (1958:Google Scholar
  2. [2]
    Benzaken C., “Structures algébriques des cheminements: pseudotreillis, gerbier de carré nul”, in Network an Switching Theory, edited by G. Biorci, Academic Press, 1968, p. 40–47.Google Scholar
  3. [3]
    Carre B.A., “An algebra for network routing problems”, J. Inst. Maths. Applics, 7 (1971), p. 273–294.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    Dantzig G.B., “All shortest routes in a graph”, Proc. I.C.C. Conference on Theory of Graphs, Rome (1966), Gordon and Breach, N.Y., p. 91–92.Google Scholar
  5. [5]
    Floyd R.W., “Algorithm 97: Shortest path”, Communication of ACM, Vol. 5 (1962) p. 345.CrossRefGoogle Scholar
  6. [6]
    Ford L.R. and Fulkerson D.R., “Flows in Network”, Princeton University Press, 1962.Google Scholar
  7. [7]
    Gondran M., “Algèbre linéaire et cheminement dans un graphe”, R.A.I.R.O., 8ième année, V-3, 1974.Google Scholar
  8. [8]
    Gondran M., “Démonstration de la convergence des algorithmes de Gauss-Jordan généralisé et “escalier” généralisé, note EDF à paraître.Google Scholar
  9. [9]
    Minieka E., “On computing Sets of Shortest Paths in a graph”, Communications of the ACM, June 1974, V. 17, 6, p. 351–3.MathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    Minieka E. and Shier D.R., “A note on an algebra for the k best routes in a network”, J. Inst. Math. Appl. 11, 1973, p. 145–149.MathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    Müller — Merbach H., “Die Inversion von Gozinto-Matrizen mit einem Graphen-Orientierten Verfahren, Elektroniche Daten Verarbeitung 11, 1969, P. 310–314Google Scholar
  12. [12]
    Peteanu V., “An algebra of the optimal path in networks”, Mathematica, Vol. 9 (1967), n°2, p. 335–342.MathSciNetGoogle Scholar
  13. [13]
    Pichat E., “Algorithms for finding the maximal elements of a finite universal algebra”, Proc. IFIP Congress 1968, EDINBURG, Booklet A, p. 96–101.Google Scholar
  14. [14]
    Robert P. and Ferland J., “Genéralisation de l’algorithme de WARSHALL”, Rev. Française Informatique et R.O. (1968) n° 7, p. 71–85.MathSciNetGoogle Scholar
  15. [15]
    Roy B., “Transitivité et connexité”, C.R. Acad. Sciences Paris, Tome 249 (1959), p.216.zbMATHGoogle Scholar
  16. [16]
    Roy B., “Chemins et circuits, enumeration et optimisation: procédures algébriques”, this book.Google Scholar
  17. [17]
    Shier D.R., “A decomposition algorithm for optimality problems in tree-structured networks”, Discrete Mathematics 6, 1973, p. 175–189MathSciNetzbMATHCrossRefGoogle Scholar
  18. [18]
    Warshall S., “A theorem on boolean Matrices”, J. of ACM, vol. 9 (1962), p. 11–12.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© D. Reidel Publishing Company, Dordrecht-Holland 1975

Authors and Affiliations

  • M. Gondran
    • 1
  1. 1.Direction des Etudes et RecherchesElectricité de FranceParisFrance

Personalised recommendations