Skip to main content

Part of the book series: Pollution Monitoring Series ((PMS))

Abstract

Copper is one of the transition elements, a group characterized by the possession of a partly filled set of d-orbitals. It is one of the few metallic elements to occur in a native (i.e. pure metal) state in the earth’s crust; in consequence, it has been exploited by man since 5000 bc, and has, together with iron, been termed one of the cornerstones of civilization (Smith, 1965). It was formerly employed as bronze (a copper-tin alloy) for the production of utensils, weapons and ornaments, but successive changes in metallurgical techniques have resulted in a decline in this use of copper. Today, the main use of copper is in the form of its various alloys, many of which are of great importance in the electrical industry. Estimates of production showed that 7.4 million short tons of copper were used in the Western World in 1964, 4.4 million of which were mined. Usable world copper reserves amount to some 200 million tons, but continued exploration has resulted in the discovery of further substantial deposits (Massey, 1973).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abeles, F. B. (1973). Ethylene in plant biology. Academic Press, London, 302 pp.

    Google Scholar 

  • Adams, P., C. J. Graves and G. W. Winsor (1975). Some effects of copper and boron deficiencies on the growth and flowering of Chrysanthemum morifolium (c.v. Hurricane). J. Sci. Fd. Agric. 26: 899–901.

    Google Scholar 

  • Alloway, B. J., M. Gregson, S. K. Gregson, R. Tanner and A. Tills (1979). Heavy metals in soils contaminated from several sources including sewage sludge. Proc. Int. Conf. on Management and Control of Heavy Metals in the Environment, London, pp. 545-8.

    Google Scholar 

  • Anne, P. and M. Dupuis (1953). Toxicity of copper with regard to some crop plants. C.R. Acad. Agr. France. 39: 58–60.

    Google Scholar 

  • Antonovics, J., A. D. Bradshaw and R. G. Turner (1971). Heavy metal tolerance in plants. Adv. Ecol. Res. 7: 1–85.

    Google Scholar 

  • Bailey, L. F. and J. S. McHargue (1943). Copper deficiency in tomatoes. Am. J. Bot. 30: 558–63.

    Google Scholar 

  • Bates, T. E. (1971). Factors affecting critical nutrient concentrations in plants and their evaluation: A review. Soil Sci. 112: 116–30.

    Google Scholar 

  • Batey, T., C. Berryman and C. Line (1972). The disposal of copper-enriched pig manure slurry on grassland. J. Br. Grassld. Soc. 27: 139–43.

    Google Scholar 

  • Bingham, F. T., J. P. Martin and J. A. Chastain (1958). Effects of phosphorous fertilization of California soils on minor element nutrition of citrus. Soil Sci. 86: 24–31.

    Google Scholar 

  • Bishop, N. I. (1964). Site of action of copper in photosynthesis. Nature. 204:401–2.

    Google Scholar 

  • Bishop, N. I. (1966). Partial reactions of photosynthesis and photoreduction. Ann. Rev. Pl. Phys. 17: 185–208.

    Google Scholar 

  • Bloomfield, C. and J. R. Saunders (1977). The complexing of copper by humidified organic matter from laboratory preparations, soil and peat. J. Soil Sci. 28: 435–44.

    Google Scholar 

  • Bloomfield, C., W. I. Kelso and G. Pruden (1976). Reactions between metals and humidified organic matter. J. Soil Sci. 27: 16–31.

    Google Scholar 

  • Bowen, J. E. (1969). Absorption of copper, zinc and manganese by sugarcane leaf tissue. Pl. Physiol. 44: 255–61.

    Google Scholar 

  • Brams, E. A. and J. G. A. Fiskell (1971). Copper accumulation in citrus roots and desorption with acid. Soil Sci. Soc. Am. Proc. 35: 772–5.

    Google Scholar 

  • Brown, J. C. (1979). Effects of boron stress on copper enzyme activity in tomato. J. Plant Nutrition. 1: 39–53.

    Google Scholar 

  • Brown, J. C. and J. E. Ambler (1973). ‘Reductants’ released by roots of Fe-deficient soybeans. Agron J. 65: 311–14.

    Google Scholar 

  • Brown, J. C. and W. E. Jones (1977a). Fitting plants nutritionally to soils. I. Soybeans. Agron. J. 69: 399–404.

    Google Scholar 

  • Brown, J. C. and W. E. Jones (1977b). Fitting plants nutritionally to soils. III. Sorghum. Agron. J. 69: 410–14.

    Google Scholar 

  • Bukovac, M. J. and S. H. Wittwer (1957). Absorption and mobility of foliar-applied nutrients. Pl. Physiol. 33: 428–35.

    Google Scholar 

  • Bussler, W. (1981). Microscopical possibilities for the diagnosis of trace element stress in plants. J. Plant Nutrition 3: 115–25.

    Google Scholar 

  • Caldwell, T. J. (1971). Copper deficiency in soils and crops. In: Trace-elements in Soils and Crops. M.A.F.F. Tech. Bull. No. 21, HMSO, London.

    Google Scholar 

  • Carter, E. D. and H. R. Day (1977). Copper fertilizer for pasture and sheep production on lateritic podzolic soils in South Australia. 1. Initial effects on virgin soil. Agric. Res. (S. Aust.). 4: 9–15.

    Google Scholar 

  • Cataldo, D. A. and R. F. Wilding (1978). Soil and plant factors influencing the accumulation of heavy metals by plants. Env. Health Persp. 27: 149–59.

    Google Scholar 

  • Cathala, N. and L. Salsac (1975). Absorption du cuivre par les racines de Mais (Zea mays L.) et de Tournesol (Helianthus annus L.). Pl. Soil. 42: 64–83.

    Google Scholar 

  • Cedeno-Maldonado, A., J. A. Swader and R. Heath (1972). The cupric ion as an inhibitor of photosynthetic electron transport in isolated chloroplasts. Pl. Physiol. 50: 698–701.

    Google Scholar 

  • Chaudhry, F. M. and J. F. Loneragan (1970). Effects of nitrogen, copper and zinc fertilizers on the copper and zinc nutrition of wheat plants. Aust. J. Agric. Res. 21: 865–79.

    Google Scholar 

  • Chaudhry, F. M. and J. F. Loneragan (1972). Zinc absorption by wheat seedlings. II. Inhibition by hydrogen ions and by micro-nutrient cations. Soil Sci. Soc. Am. Proc. 36: 327–31.

    Google Scholar 

  • Cheshire, M. V., P. C. De Kock and R. H. E. Inkson (1967). Factors affecting the copper content of oats grown in peat. J. Sci. Fd. Agric. 18: 156–60.

    Google Scholar 

  • Chumbley, G. C. (1971). Permissible levels of toxic metals in sewage used on agricultural land. ADAS Advisory Paper No. 10, MAFF, London.

    Google Scholar 

  • Coombes, A. J. (1979). The uptake, transport and metabolic effects of copper in higher plants. M. Phil. Thesis, CNAA (Liverpool Polytechnic).

    Google Scholar 

  • Coombes, A. J., N. W. Lepp and D. A. Phipps (1976). Effect of copper on IAA-oxidase activity in root tissue of barley (Hordeum vulgare L. cv. Zephyr). Z. Pflanzenphysiol. 80: 236–42.

    Google Scholar 

  • Coombes, A. J., N. W. Lepp and D. A. Phipps (1978). Desorption of copper from excised roots of barley (Hordeum vulgare L. cv. Zephyr) as related to the chemical form of the applied copper. Z. Pflanzenphysiol. 87: 279–83.

    Google Scholar 

  • Coombes, A. J., D. A. Phippsand N. W. Lepp (1977). Uptake patterns of free and complexed copper ions in excised roots of barley (Hordeum vulgare L. cv. Zephyr). Z. Pflanzenphysiol. 82: 435–9.

    Google Scholar 

  • Corwin, A. H. (1950). Copper complexes. In: A Symposium on Copper Metabolism (W. D. McElroy and B. Glass (eds)), Johns Hopkins Press, Baltimore, pp. 1–17.

    Google Scholar 

  • Cox, F. R. and E. J. Kamprath (1972). Micronutrient soil tests. In: Micronutrients in Agriculture. (J. J. Mortvedt, P. M. Giordano and W. L. Lindsay (eds)), Soil Sci. Soc. Am. Inc., Madison, Wisconsin, pp. 239–317.

    Google Scholar 

  • Cunningham, J. D., J. A. Ryan and D. R. Keeney (1975). Phytotoxicity in, and metal uptake from, soil treated with metal-amended sewage sludge. J. Environ. Qual. 4: 455–60.

    Google Scholar 

  • Daniels, R. R. and B. E. Struckmeyer (1973). Copper toxicity in Phaseolus vulgaris L. as influenced by iron nutrition. III. Partial alleviation by succinic acid 2,2-dimethyl hydrazide. J. Am. Soc. Hortic. Sci. 98: 449–52.

    Google Scholar 

  • Daniels, R. R., B. E. Struckmeyer and L. A. Peterson (1972). Copper toxicity in Phaseolus vulgaris L. as influenced by iron nutrition. I. An anatomical study. J. Am. Soc. Hortic. Sci. 97: 249–54.

    Google Scholar 

  • Daniels, R. R., B. E. Struckmeyer and L. A. Peterson (1973). Copper toxicity in Phaseolus vulgaris L. as influenced by iron nutrition. II. Elemental and electron microprobe analysis. J. Am. Soc. Hortic. Sci. 98: 31–4.

    Google Scholar 

  • Das Gupta, B. and S. Mukherji (1977). Effects of toxic concentrations of copper on growth and metabolism of rice seedlings. Z. Pflanzenphysiol. 82: 95–106.

    Google Scholar 

  • Davies, D. E., L. J. Hooper, R. R. Charlesworth, R. C. Little, C. Evans and B. Wilkinson (1971). Copper deficiency in crops. III. Copper disorders in cereals grown in chalk soils in south eastern and central southern England. MAFF Tech. Bull. No. 21, HMSO, London, pp. 88–118.

    Google Scholar 

  • Davies, J. N. (1973). Enzymes in Chrysanthemum tissue. Rep. Glasshouse Crops Res. Inst. 1972, pp. 62-3.

    Google Scholar 

  • Dawson, J. E. and C. K. N. Nair (1950). The copper amalgam electrode and its application. IV. The chemical nature of copper complexes in peat, soil and plants. In: A Symposium on Copper Metabolism (W. D. McElroy and B. Glass (eds)), Johns Hopkins Press, Baltimore, pp. 315–35.

    Google Scholar 

  • Denaeyer de-Smet, S. (1973). Comparison du cycle biologique annuel de divers oligoĂ©lĂ©ments dans une Pessière (Piceetum) et dans une HĂªtraire (Fagetum) Ă©tablies sur mĂªme roche-mère. Bull. Soc. roy. Bot. Belg. 106: 149–65.

    Google Scholar 

  • Dollard, G. J. (1979). Some aspects of the behaviour of heavy metal ions in the tissue of a woody plant. Ph.D. Thesis, CNAA (Liverpool Polytechnic).

    Google Scholar 

  • Dollard, G. J. and N. W. Lepp (1978). Some factors affecting the transport of heavy metals in woody plant tissue. In: Trace Substances in Environmental Health XI (D.D. Hemphill (ed)), University of Missouri Press, Columbia, pp. 433–9.

    Google Scholar 

  • Drew, A. and C. Reilly (1972). Observations on copper tolerance in the vegetation of a Zambian copper clearing. J. Ecol. 60: 439–44.

    Google Scholar 

  • Dunne, T. C. (1956). A zinc-copper antagonism affecting cereals. Proc. Aust. Plant Nutr. Conf. 1: 278–83.

    Google Scholar 

  • Dykeman, W. R. and A. S, De Souza (1966). Natural mechanism of copper tolerance in a copper swamp forest. Can. J. Bot. 44: 871–8.

    Google Scholar 

  • Elsokkary, I. H. and J. LĂ¥g (1978). Distribution of different fractions of Cd, Pb, Zn and Cu in industrially polluted and non-polluted soils of Odda region, Norway. Acta Agric. Scand. 23: 262–8.

    Google Scholar 

  • Ennis, M. T. (1962). The chemical nature of copper complexes in peat. Irish J. Agric. Res. 1: 147–55.

    Google Scholar 

  • Evans, H. J. and G. J. Sorger (1966). Role of mineral elements, with emphasis on univalent cations. Ann. Rev. Pl. Phys. 17:47–76.

    Google Scholar 

  • Ferguson, I. B. and E. G. Bollard (1976). The movement of calcium in woody stems. Ann. Bot. 40: 1057–65.

    Google Scholar 

  • Fleming, G. A. and J. Delaney (1961). Copper and nitrogen in the nutrition of wheat on cutaway peat. Irish J. Agric. Res. 1: 81–2.

    Google Scholar 

  • Foy, C. D., R. L. Chaney and M. C. White (1978). The physiology of metal toxicity in plants. Ann. Rev. Pl. Phys. 29: 511–66.

    Google Scholar 

  • Gadgil, R. L. (1969). Tolerance of heavy metals and the reclamation of industrial waste. J. Appl. Ecol. 6: 247–59.

    Google Scholar 

  • Geering, H. R. and J. F. Hodgson (1969). Micronutrient cation complexes in soil solution: III. Characterization of soil solution ligands and their complexes with Zn2+ and Cu2+. Soil Sci. Soc. Am. Proc. 33: 54–9.

    Google Scholar 

  • Gilbert, S. G. (1951). A biochemical basis for copper-nitrogen balance in tung. Pl. Physiol. 26: 398–405.

    Google Scholar 

  • Gladstones, J. S., J. F. Loneragan and N. J. Simmons (1975). Mineral elements in temperate crop and pasture plants. III. Copper. Aust. J. Agric. Res. 26: 113–26.

    Google Scholar 

  • Goren, A. and H. Wanner (1971). The absorption of lead and copper by roots of Hordeum vulgare. Ber. Schweiz Bot. Ges. 80: 334–40.

    Google Scholar 

  • Graham, R. D. (1975). Male sterility in copper-deficient wheat plants. Nature. 254:514–15.

    Google Scholar 

  • Graham, R. D. (1978). Tolerance of Triticale, wheat and rye to copper deficiency. Nature. 271: 542–3.

    Google Scholar 

  • Graham, R. D. (1979). Transport of copper and manganese to the xylem exudate of sunflower. Plant, Cell and Environment. 2: 139–43.

    Google Scholar 

  • Graham, R. D., G. D. Anderson and J. S. Ascher (1981). Absorption of copper by wheat, rye and some hybrid genotypes. J. Plant Nutrition. 3: 679–86.

    Google Scholar 

  • Graves, C. J. and J. F. Sutcliffe (1974). An effect of copper deficiency on the initiation and development of flower buds on Chrysanthemum morifolium grown in solution culture. Ann. Bot. 38: 729–38.

    Google Scholar 

  • Graves, C. J., P. Adams and G. W. Winsor (1979). Some effects of copper deficiency on the flowering, copper status and phenolase activity of different cultivars of Chrysanthemum morifolium. J. Sci. Ed. Agric. 30: 751–8.

    Google Scholar 

  • Greenwood, E. A. N. and G. G. Hallsworth (1960). Studies on the nutrition of legumes. II. Some interactions of calcium, phosphorus, copper and molybdenum on the growth and chemical composition of Trifolium subterraneum. Plant Soil. 12: 97–127.

    Google Scholar 

  • Gregoriadis, G. and T. L. Sourkes (1968). Role of protein in removal of copper from the liver. Nature. 218: 290–1.

    Google Scholar 

  • Gross, R. E., P. Pugno and W. M. Dugger (1970). Observations on the mechanism of copper damage in Chlorella. Pl. Physiol. 46: 183–5.

    Google Scholar 

  • Guha, M. M. and R. L. Mitchell (1966). Trace and major element composition of the leaves of some deciduous trees. Plant Soil. 24: 90–112.

    Google Scholar 

  • Hallaway, M., P. D. Phethean and J. Taggart (1970). A critical study of the intracellular distribution of ascorbate oxidase and a comparison of the kinetics of the soluble and cell-wall enzyme. Phytochem. 9: 935–44.

    Google Scholar 

  • Hallsworth, E. G., E. A. N. Greenwood and M. G. Yates (1964). Studies on the nutrition of forage legumes. III. The effect of copper on the nodulation of Trifolium subterraneum L. and Trifolium repens. Plant Soil. 20: 17–33.

    Google Scholar 

  • Hallsworth, E. G., M. G. Yates, P. E. Cansfield and J. T. Saul (1965). Studies in the nutrition of forage legumes. V. The effects of copper supply on the concentrations of copper, iron, and manganese present in T. subterraneum grown in sand culture. Plant Soil. 23: 323–36.

    Google Scholar 

  • Hansen, E. (1966). Post harvest physiology of fruits. Ann. Rev. Pl. Phys. 17: 459–80.

    Google Scholar 

  • Harris, D. J. M. and A. Sass-Kortsak (1967). The influence of amino acids on copper uptake by rat liver slices. J. Clin. Invest. 46: 659–67.

    Google Scholar 

  • Harrison, S. J., N. W. Lepp and D. A. Phipps (1978). Uptake of copper by excised roots. I. A modified experimental technique for measuring ion uptake by excised roots and its application in determining uptake characteristics of ‘free’ copper ions in excised Hordeum roots. Z. Pflanzenphysiol. 90: 443–50.

    Google Scholar 

  • Harrison, S. J., N. W. Lepp and D. A. Phipps (1979). Uptake of copper by excised roots. II. Copper desorption from the free space. Z. Pflanzenphysiol. 94: 27–34.

    Google Scholar 

  • Harrison, S. J., N. W. Lepp and D. A. Phipps (1981). Calculation of kinetic constants for ion uptake studies. A comparison of methods in relation to their effects on data interpretation. J. Plant Nutrition. 3: 181–92.

    Google Scholar 

  • Hawf, L. R. and W. E. Schmid (1967). Uptake and translocation of zinc by intact plants. Plant Soil. 27: 249–60.

    Google Scholar 

  • Hewitt, E. J. (1953). Metal interrelationship in plant nutrition. I. Effects of some metal toxicities on sugar beet, tomato, oat, potato and narrowstem kale grown in sand culture. J. Exp. Bot. 4: 59–64.

    Google Scholar 

  • Hewitt, E. J. (1963). The essential nutrient elements: Requirements and interactions in plants. In: Plant Physiology. A treatise. Vol. 5, Inorganic Nutrition of Plants (F. J. Steward (ed)), Academic Press, New York, pp. 137–360.

    Google Scholar 

  • Hill, J. (1978). Copper translocation in Wheat. Ph.D. Thesis, Murdoch University, W. Australia.

    Google Scholar 

  • Hill, J. M. (1973). The changes with age in the distribution of copper and some copper-containing oxidases in red clover (Trifolium pratense L. cv. Dorset Marlgrass). J. Exp. Bot. 24: 525–36.

    Google Scholar 

  • Hillman, W. S. (1961). Test-tube studies on flowering: Experiments with the Lemnaceae, or duckweeds. Bull. Torrey. Bot. Club. 88: 327–36.

    Google Scholar 

  • Hillman, W. S. (1964). The Physiology of Flowering. Holt, Rinehart and Winston, New York, 164 pp.

    Google Scholar 

  • Hocking, P. J. and J.S. Pate (1977). Mobilization of minerals to developing seeds of legumes. Ann. Bot. 41: 1259–78.

    Google Scholar 

  • Hodgson, J. F., W. L. Lindsay and J. F. Trierweiler (1966). Micronutrient cation complexing in soil solution. II. Complexing of zinc and copper in displaced solution from calcareous soil. Soil Sci. Soc. Am. Proc. 30: 723–6.

    Google Scholar 

  • Hooper, L. J. and D. B. Davies (1968). Melanism and associated symptoms in wheat grown on copper-responsive chalkland soils. J. Sci. Fd. Agric. 19: 733–9.

    Google Scholar 

  • Hughes, M. K., N. W. Lepp and D. A. Phipps (1980). Aerial heavy metal pollution and terrestrial ecosystems. Adv. Ecol. Res. 11: 217–327.

    Google Scholar 

  • Hunter, R. and G. W. Welkie (1977). Growth of copper-treated corn roots as affected by EDTA, IAA, succinic acid-2,2-dimethyl hydrazide, vitamins and potassium. Environ. Exptal. Bot. 17: 19–26.

    Google Scholar 

  • Hutchinson, T. C. and L. M. Whitby (1974). Heavy-metal pollution in the Sudbury mining and smelting region of Canada. I. Soil and vegetation contamination by nickel, copper and other metals. Environ. Conserv. 1: 123–32.

    Google Scholar 

  • Irving, H. and R. P. J. Williams (1953). The stability of transition-metal complexes. J. Chem. Soc. 3192-210.

    Google Scholar 

  • Jacobson, W. B. G. (1967). The influence of the copper content of the soil on the trees and shrubs of Molly South Hill, Mangula. Kirkia. 6: 63–84.

    Google Scholar 

  • James, W. D. and Cragg, J. M. (1943). The ascorbic acid system as an agent in barley respiration. New Phytol. 42: 28–44.

    Google Scholar 

  • Jarvis, S. C. (1978). Copper uptake and accumulation by perennial ryegrass grown in soil and solution culture. J. Sci. Ed. Agric. 29: 12–18.

    Google Scholar 

  • Judel, G. K. (1972). Effect of copper and nitrogen deficiency on phenol oxidase activity and content of phenols in leaves of sunflower (Helianthus annus) Z. Pflanzenernaehr. Bodenkd. 131: 159–70.

    Google Scholar 

  • Kester, D. E., K. Uriu and T. Aldrich (1961). Copper deficiency in almonds and its response to treatment. Proc. Am. Soc. Hort. Sci. 77: 286–94.

    Google Scholar 

  • King, P. M. and A. M. Alston (1975). Diagnosis of trace-element deficiencies in wheat on Eyre Peninsula, S. Australia. In: Trace Elements in Soil-Plant-Animal Systems (D. J. D. Nicholas and A. R. Egan (eds)), Academic Press, New York, pp. 339–52.

    Google Scholar 

  • Korkman, J. and P. Virta (1979). The leaching and retention of copper lignosulphonate, copper sulphate and copper-EDTA in soil. J. Sci. Agric. Soc. Fin. 51: 51–8.

    Google Scholar 

  • Kostal, L. (1971). Einfluss von KĂ¼pfer auf die Mitose. Biologia. 26: 571–3.

    Google Scholar 

  • Larsen, S. (1966). The sorption, desorption and translocation of copper by plants. Agrochimica. 10: 190–7.

    Google Scholar 

  • Leonard, C. D. and I. Stewart (1952). Correction of iron chlorosis in citrus with chelated iron. Proc. Fla. State Hortic. Soc. 65: 20–4.

    Google Scholar 

  • Lepp, N. W. (1979). Cycling of copper in woodland ecosystems. In: Copper in the Environment Part I (J. O. Nriagu (ed)), Wiley, New York, pp. 289–323.

    Google Scholar 

  • Lepp, N. W. and G. T. Eardley (1978). Growth and trace metal content of European sycamore seedlings grown in soil amended with sewage sludge. J. Environ. Qual. 7: 413–16.

    Google Scholar 

  • Lewis, T. E. and F. E. Broadbent (1961). Soil organic matter-metal complexes. 4. Nature and properties of exchange sites. Soil Sci. 91: 393–9.

    Google Scholar 

  • Lieberman, M. and L. W. Mapson (1964). Genesis and biogenesis of ethylene. Nature. 204: 343–5.

    Google Scholar 

  • Linser, H., H. Kuhn, A. Zahiri and F. A. Zeid (1975). Copper uptake and protein synthesis of summer wheat during vegetation period. Z. Pflanzenernaehr. Bodenkd. 134: 25–32.

    Google Scholar 

  • Lipman, C. B. and G. Mackinney (1931). Proof of the essential nature of copper for higher green plants. Pl. Physiol. 6: 593–9.

    Google Scholar 

  • Loneragan, J. F. (1975). The availability and absorption of trace elements in soilplant systems and their relation to movement and concentrations of trace elements in plants. In: Trace Elements in Soil-Plant-Animal Systems (D. J. D. Nicholas and A.R. Egan (eds)), Academic, Press, New York, pp. 109–34.

    Google Scholar 

  • Loneragan, J. F., K. Snowball and A. D. Robson (1976). Remobilization of nutrients and its significance in plant nutrition. In: Transport and Transfer Processes in Plants (I. F. Wardlaw and J. B. Passioura (eds)), Academic Press, New York, pp. 463–9.

    Google Scholar 

  • Loustalot, A. J., F. W. Burrows, S. C. Gilbert and A. Nason (1945). Effect of copper and zinc deficiencies on the photosynthetic activity of the foliage of young tung trees. Pl. Physiol. 20: 283–8.

    Google Scholar 

  • Lucas, E. B. (1945). The effect of addition of sulphates of copper, zinc and manganese on the absorption of these elements in plants grown on organic soils. Soil Sci. Soc. Am. Proc. 10: 269–75.

    Google Scholar 

  • Lucas, R. E. and B. D. Knezek (1972). Climatic and soil conditions promoting micronutrient deficiencies in plants. In: Micronutrients in Agriculture (J. J. Mortvedt, P. M. Giordano and W. L. Lindsay (eds)), Soil Sci. Soc. Am. Inc., Madison, Wisconsin, pp. 265–88.

    Google Scholar 

  • McLaren, R. G. and D. V. Crawford (1973a). Studies on soil copper. 1. The fractionation of copper in soils. J. Soil Sci. 24: 172–81.

    Google Scholar 

  • McLaren, R. G. and D. V. Crawford (1973b). Studies on soil copper. 2. The specific adsorption of copper by soils. J. Soil Sci. 24: 443–52.

    Google Scholar 

  • McNeilly, T. and M. S. Johnson (1978). Mineral nutrition of copper-tolerant browntop on metal contaminated minespoil. J. Environ. Qual. 7: 483–6.

    Google Scholar 

  • Marquenie-van der Werff, M. and W. H. O. Ernst (1979). Kinetics of copper and zinc uptake by leaves and roots of an aquatic plant, Elodea nutallii. Z. Pflanzenphysiol. 92: 1–10.

    Google Scholar 

  • Massey, A. G. (1973). Copper. In: Comprehensive Inorganic Chemistry. Volume 3 (J.C. Bailar Jr, H.J. EmelĂ©us, R. Nyholm and A. F. Trotman-Dickenson (eds)), Pergamon Press, Oxford, pp. 1–78.

    Google Scholar 

  • Massey, H. F. (1972). pH and soluble Cu, Ni and Zn in eastern Kentucky coal mine spoil materials. Soil Sci. 14: 217–21.

    Google Scholar 

  • Mecklenberg, R. A., H. B. Tukey, Jr and J. V. Morgan (1966). A mechanism for the leaching of calcium from foliage. Pl. Physiol. 41: 610–13.

    Google Scholar 

  • Mitchell, E. K. and P. J. Davies (1975). Evidence for three different systems of movement of indoleacetic acid in intact roots of Phaseolus coccineus. Physiol. Plant. 33: 290–4.

    Google Scholar 

  • Mukherji, S. and B. Das Gupta (1972). Characterization of copper toxicity in lettuce seedlings. Physiol. Plant. 27: 126–9.

    Google Scholar 

  • Mulder, E. G. (1949). Mineral nutrition in relation to biochemistry and physiology of potatoes. I. Effect of nitrogen, phosphate, potassium, magnesium and copper nutrition on tyrosine content and tyrosinase with particular reference to blackening of the tubers. Plant Soil. 2: 59–121.

    Google Scholar 

  • Nambiar, E. K. S. (1976a). Genetic differences in the copper nutrition of cereals. I. Differential responses of genotypes to copper. Aust. J. Agric. Res. 27: 453–63.

    Google Scholar 

  • Nambiar, E. K. S. (1976b). Genetic differences in the copper nutrition of cereals. II. Genotypic differences in response to copper in relation to copper, nitrogen and other mineral contents of plants. Aust. J. Agric. Res. 27: 465–77.

    Google Scholar 

  • Nason, A. and W. D. McElroy (1963). Modes of action of essential mineral elements. In: Plant Physiology. A treatise. Vol. 3. Inorganic Nutrition of Plants (F.C. Steward (ed)), Academic Press, New York, pp. 451–536.

    Google Scholar 

  • Neish, A. C. (1939). XXXVII. Studies on chloroplasts. II. Their chemical composition and the distribution of certain metabolites between the chloroplasts and the remainder of the leaf. Biochem. J. 33:300–8.

    Google Scholar 

  • Nielsen, N. E. (1976). The effect of plants on the copper concentration of the soil solution. Plant Soil. 45: 679–87.

    Google Scholar 

  • Osterberg, R. and B. Sjoberg (1968). The metal complexes of peptides and related compounds. III. Copper(II) complexes of glycylglycylglycine in 3.0 m (Na)ClO4 medium. J. Biol. Chem. 243: 3038–50.

    Google Scholar 

  • Ozolinya, G. R. and L. P. Lapinya (1976). Binding of copper with proteins in plant leaves. Sou. Pl. Physiol. 23: 953–9.

    Google Scholar 

  • Pate, J. S., P. J. Sharkey and O. A. M. Lewis (1975). Xylem to phloem transfer of solutes in fruiting shoots of legumes, studied by a phloem bleeding technique. Planta (Berl.). 122: 11–26.

    Google Scholar 

  • Persson, H. (1956). Studies in ‘copper mosses’.J. Hattori Bot. Lab. 17: 1–18.

    Google Scholar 

  • Pettersson, O. (1976). Heavy metal ion uptake by plants from nutrient solutions with ion, plant species and growth period variations: Plant Soil. 45:445–9.

    Google Scholar 

  • Phipps, D. A. (1976). Metals and Metabolism. O.C.S. No. 26, Oxford University Press, Oxford.

    Google Scholar 

  • Piper, C. S. (1942). Investigations on copper deficiency in plants. J. Agric. Sci. 32:143–78.

    Google Scholar 

  • Pissarek, H. P. (1974). Investigation of the anatomical changes in oats and sunflower caused by copper deficiency. Z. Pflanzenernaehr. Bodenkd. 137:224–34.

    Google Scholar 

  • Rahimi, A. and W. Bussler (1973). The effect of copper deficiency on the tissue structure of higher plants. Z. Pflanzenernaehr. Bodenkd. 135:183–95.

    Google Scholar 

  • Rasheed, M. A. and R. C. Seeley (1966). Relation between protein and copper contents of some plants. Nature. 212:644–5.

    Google Scholar 

  • Reckendorfer, P. (1954). The theory of plant injuries produced by plant protectants. Pflanzenschutz. Ber. 13: 129–53.

    Google Scholar 

  • Reilly, A. and C. Reilly (1973). Copper-induced chlorosis in Becium homblei (De Wild) Duvign and Planke. Plant Soil. 38: 671–4.

    Google Scholar 

  • Reuther, W. and C. K. Labanauskas (1966). Copper. In Diagnostic Criteria for Plants and Seeds (H. D. Chapman (ed)), University of California Press, pp.157-79.

    Google Scholar 

  • Reuther, W. and P. F. Smith (1954). Toxic effects of accumulated copper in Florida soils. Soil Sci. Soc. Fla. Proc. 14: 17–23.

    Google Scholar 

  • Reuther, W., P. F. Smith and G.K. Scudder, Jr (1953). Relation of pH and soil type to toxicity of copper to citrus seedlings. Fla. State Hortic. Soc. Proc. 66: 73–80.

    Google Scholar 

  • Riceman, D. S. (1948). Mineral deficiency in plants on the soils of the ninety-mile plain in South Australia. 2. Effect of zinc copper and phosphate on subterranean clover and lucerne grown in Kapper sand, Keith. C.S.I.R. Tech. Bull. No. 234.

    Google Scholar 

  • Riceman, D. S., C. M. Donald and S. T. Evans (1940). Further investigations on copper deficiency in plants in South Australia. C.S.I.R. Pamphlet. No. 96.

    Google Scholar 

  • Rosell, R. A. and A. Ulrich (1964). Critical zinc concentrations and leaf minerals of sugar beet plants. Soil Sci. 97: 152–67.

    Google Scholar 

  • Rossiter, R. C. (1951). Studies on the nutrition of pasture plants in the southwest of Western Australia. I. The effect of copper, zinc and potassium on the growth of the Dwalganup strain of Trifolium subterraneum L. on sandy soils. Aust. J. Agric. Res. 2: 1–13.

    Google Scholar 

  • Roth, J. A., E. F. Wallihan and R. G. Sharpless (1971). Uptake by oats and soybeans of copper and nickel added to a peat soil. Soil Sci. 112:338–42.

    Google Scholar 

  • Ruhling, Ă… and G. Tyler (1973). Heavy metal pollution and the decomposition of spruce needle litter. Oikos. 24:402–16.

    Google Scholar 

  • Savage, W., W. L. Berry and C. A. Reed (1981). Effects of trace element stress on the morphology of developing seeds of lettuce (Lactuca sauva L. Grand Rapids) as shown by scanning electron microscopy. J. Plant Nutrition. 3: 129–38.

    Google Scholar 

  • Scharrer, K. and E. Schaumlöffel (1960). Ăœber die Kupferaufnahme durch Sommergetreide auf Kupfermangelboden. Z. Pflanzenernaehr. Bodenkd. 89: 1–17.

    Google Scholar 

  • Schmid, W. E., H. P. Haag and E. Epstein (1965). Absorption of zinc by excised roots. Physiol. Plant. 18: 860–9.

    Google Scholar 

  • SchĂ¼tte, K. H. and M. Mathews (1968). An anatomical study of copper-deficient wheat. Trans. R. Soc. S. Afr. 38: 183–200.

    Google Scholar 

  • Shear, C. B. and M. Faust (1970). Calcium transport in apple trees. Pl. Phvsiol. 45: 670–4.

    Google Scholar 

  • Shuman, L. M. (1976). Zinc adsorption isotherms for soil clays with and without iron oxides removed. Soil Sci. Soc. Am. J. 40:349–52.

    Google Scholar 

  • SillĂ©n, L. G. and A. E. Martell (1964). Stability constants of metal-ion complexes. Chem. Soc. Sp. Publ., London.

    Google Scholar 

  • Smith, B. W. (1965). Sixty Centuries of Copper. Copper Development Association, London.

    Google Scholar 

  • Smith, P. E. (1953). Heavy metal accumulation by citrus roots. Bot. Gaz. 114:426–36.

    Google Scholar 

  • Smith, P. F., W. Reuther and A. W. Specht (1950). Mineral composition of chlorotic orange leaves and some observations on the relation of sample preparation technique to the interpretation of results. Pl. Physiol. 25:496–506.

    Google Scholar 

  • Sommer, A. L. (1931). Copper as an essential to plant growth. Pl. Physiol. 6: 339–45.

    Google Scholar 

  • Sowell, W. F., R. D. Rouse and J. I. Wear (1957). Copper toxicity of the cotton plant in solution cultures. Agron. J. 49: 206–7.

    Google Scholar 

  • Spencer, W. F. (1966). Effect of copper on yield and uptake of phosphorus and iron by citrus seedlings grown at various phosphorus levels. Soil Sci. 102:296–9.

    Google Scholar 

  • Steenbjerg, F. (1951). Yield curves and chemical plant analyses. Plant Soil. 3: 97–109.

    Google Scholar 

  • Stevenson, F. J. (1976). Stability constants of Cu2+, Pb2+ and Cd3+ complexes with humic acids. J. Soil Sci. Soc. Am. 40:665–72.

    Google Scholar 

  • Stevenson, F. J. and M. S. Ardakani (1972). Organic matter reactions involving micronutrients in soils. In: Micronutrients in Agriculture (J. J. Mortvedt, P. M. Giordano and W. L. Lindsay (eds)), Soil Sci. Soc. Am. Inc., Madison, Wisconsin, pp. 79–114.

    Google Scholar 

  • Stone, E. L. (1968). Microelement nutrition of forest trees: A review. In: Forest Fertilization, Theory and Practice. Tennessee Valley, Authority, Alabama, pp. 132–75.

    Google Scholar 

  • Tähtinen, H. (1976). The effect of lime and phosphorus on copper uptake by oats and the response to copper fertilization. Ann. Agr. Fenn. 15: 245–53.

    Google Scholar 

  • Tammes, P. M. L. and J. van Die (1966). Studies on phloem exudation from Yucca flaccida Haw. IV. Translocation of macro-and micro-nutrients by the phloem sap stream. Proc. Kon. Ned. Akad. Wet. 69: 655–9.

    Google Scholar 

  • Tiffin, L. O. (1972). Translocation of micronutrients in plants. In: Micronutrients in Agriculture (J. J. Mortvedt, P.M. Giordano and W. L. Lindsay (eds)), Soil Sci. Soc. Am. Inc., Madison, Wisconsin, pp. 199–229.

    Google Scholar 

  • Tiffin, L. O. (1977). The form and distribution of metals in plants: An overview. In: Proc. 15th Annual Hanford Life Sci. Symposium ERDA-TIC-CONF. No. 750929, Oak Ridge, Tennessee, pp. 315–34.

    Google Scholar 

  • Tompsett, P. B. and W. W. Schwabe (1974). Growth hormone changes in Chrysanthemum morifolium. Effects of environmental factors controlling flowering. Ann. Bot. 38:269–85.

    Google Scholar 

  • Turner, R. G. (1970). The subcellular distribution of copper and zinc within the roots of metal tolerant clones of Agrostis tenuis Sibth. New Phyt. 69: 725–31.

    Google Scholar 

  • Tyler, G. (1971). Distribution and turnover of organic matter and minerals in a shore meadow ecosystem: Studies in the ecology of Baltic sea shore meadows— IV. Oikos. 22:265–91.

    Google Scholar 

  • Tyler, G. (1974). Heavy metal pollution and soil enzymatic activity. Plant Soil. 41: 303–11.

    Google Scholar 

  • Tyler, G. (1976). Heavy metal pollution, phosphatase activity and mineralization of organic phosphates in forest soils. Soil Biol. Biochem. 8: 327–32.

    Google Scholar 

  • Veltrup, W. (1976). Concentration-dependent uptake of copper by barley roots. Physiol. Plant. 36: 217–20.

    Google Scholar 

  • Veltrup, W. (1977). The uptake of copper by barley roots in the presence of zinc. Z. Pflanzenphvsiol. 83: 201–6.

    Google Scholar 

  • Veltrup, W. (1979). The effect of Ni2+, Cd2+ and Co2+ on the uptake of copper by intact barley roots. Z. Pflanzenphysiol. 93: 1–9.

    Google Scholar 

  • Walsh, L. M., W. H. Erhardt and H. D. Siebel (1972). Copper toxicity in snapbeans (Phaseolus vulgaris L.). J. Environ. Qual. 1: 197–200.

    Google Scholar 

  • Whitby, L. M. and T. C. Hutchinson (1974). Heavy metal pollution in the Sudbury mining and smelting region of Canada. II. Soil toxicity tests. Environ. Conserv. 1: 191–200.

    Google Scholar 

  • Williams, C. H. and C. W. E. Moore (1952). The effect of stage of growth on the copper, zinc, manganese and molybdenum contents of Algerian oats grown on thirteen soils. Aust. J. Agric. Res. 3: 343–61.

    Google Scholar 

  • Wu, L. and A. D. Bradshaw (1972). Aerial pollution and the rapid evolution of copper tolerance. Nature. 238:167–9.

    Google Scholar 

  • Wu, L., D. A. Thurman and A. D. Bradshaw (1975). The uptake of copper and its effects upon respiratory processes of roots of copper-tolerant and non-tolerant clones of Agrostis stolonifera. New Phyt. 75: 225–9.

    Google Scholar 

  • Young, H. E. and V. P. Guinn (1966). Chemical elements in complete mature trees of seven species in Maine. Tappi. 49: 190–7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Applied Science Publishers Ltd

About this chapter

Cite this chapter

Lepp, N.W. (1981). Copper. In: Lepp, N.W. (eds) Effect of Heavy Metal Pollution on Plants. Pollution Monitoring Series. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-7339-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-7339-1_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-7341-4

  • Online ISBN: 978-94-011-7339-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics