Combinations of antibacterial drugs

  • N. A. Simmons
Part of the Current Status of Modern Therapy book series (CSMT, volume 4)


A few years ago I carried out a survey in a hospital in which I was then working and found that sufficient antibiotics were being dispensed by the pharmacy to maintain half of the patients in the hospital on antibiotics for the duration of their stay. However, on closer inspection it was apparent that fewer patients were receiving several antibacterial drugs and occasionally as many as three simultaneously. The reasons for the treatment were not always sound and combinations were sometimes given on the basis that two antibiotics were bound to be better than one. Similarly, the Lancet recently estimated that as many as one fifth of patients in hospital with infections receive two or more antibacterial agents concurrently1. The value of commercial preparations of fixed combinations of drugs is suspect2 and in the past the sale of some combinations has been banned in the United States by the Food. and Drug Administration3. Nevertheless, in Great Britain MIMS (the Monthly Index of Medical Specialities) lists in its sections on antibiotics, sulphonamides and antibacterials no fewer than 11 commercially available mixtures of antibacterial agents and, presumably, the pharmaceutical companies are not in the habit of producing preparations for which there is no demand.


Antibacterial Agent Nalidixic Acid Serratia Marcescens Antibacterial Drug Fusidic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Leading Article. (1978). Antibiotic antagonism and synergy. Lancet, 2, 80Google Scholar
  2. 2.
    National Research Council Division of Medical Sciences Drug Efficacy Study (National Academy of Sciences). (1969). Fixed combinations of antimicrobial agents. N. Engl. J. Med., 280, 1149Google Scholar
  3. 3.
    Crout, J. R. (1974). Fixed combination prescription drugs: FDA policy. J. Clin. Pharmacol., 14, 249PubMedGoogle Scholar
  4. 4.
    Jawetz, E. and Gunnison, J. B. (1952). An experimental basis of combined antibiotic action. J. Am. Med. Assoc., 150, 693PubMedCrossRefGoogle Scholar
  5. 5.
    Jawetz, E., Gunnison, J. B., Coleman, V. R. and Kempe, H. C. (1955). A laboratory test for bacterial sensitivity to combinations of antibiotics. Am. J. Clin. Pathol., 25, 1016PubMedGoogle Scholar
  6. 6.
    Bushby, S. R. M. and Hitchings, G. H. (1968). Trimethoprim, a sulphonamide potentiator. Br. J. Pharmacol. Chemother., 33, 72PubMedGoogle Scholar
  7. 7.
    Herman, L. G. (1959). Antibiotic sensitivity using pretreated plates. II. A demonstration of inhibitory activity with a low level combination of a sulphonamide and polymyxin B against Proteus species. Antibiotics Annu., 1958–1959, 836Google Scholar
  8. 8.
    Elek, S. D. and Hilson, G. R. F. (1954). Combined agar diffusion and replica plating techniques in the study of antibacterial substances. J. Clin. Pathol., 7, 37PubMedCrossRefGoogle Scholar
  9. 9.
    Chabbert, Y. (1957). Une technique nouvelle d’étude de l’action bactericide des associations d’antibiotiques: le transfer sur cellophane. Ann. Inst. Pasteur, 93, 289Google Scholar
  10. 10.
    Garrod, L. P. and Waterworth, P. M. (1969). Tests of Combined Antibacterial Action. ACP Broadsheet 63. May 1969. ( London: Association of Clinical Pathologists )Google Scholar
  11. 11.
    Dowling, H. F. (1957). Mixtures of antibiotics. J. Am. Med. Assoc., 164, 44PubMedCrossRefGoogle Scholar
  12. 12.
    Weinstein, R. J., Young, L. S. and Hewitt, W. L. (1975). Comparison of methods for assessing in vitro antibiotic synergism against Pseudomonas and Serratiaj. Lab. Clin. Med., 86, 853Google Scholar
  13. 13.
    Craig, W. A. and Kunin, C. M. (1973). Distribution of trimethoprim-sulphamethoxazole in tissues of Rhesus monkeys. J. Infect Dis., 128 (Suppl.), 575PubMedCrossRefGoogle Scholar
  14. 14.
    Böhni, E. (1969). Chemotherapeutic activity of the combination of trimethoprim and sulphamethoxazole in infections of mice. Postgrad. Med. J. Suppl. 45, 18Google Scholar
  15. 15.
    Manten, A. and Meyerman-Wisse, M. J. (1961). Antagonism between antibacterial drugs. Nature, 192, 671PubMedCrossRefGoogle Scholar
  16. 16.
    Manten, A. and Meyerman-Wisse, M. J. (1962). A systematic study of antibiotic antagonism. Antonie van Leeuwenhoek, 28, 321CrossRefGoogle Scholar
  17. 17.
    Mouton, R. P. (1975). An introduction to aspects of synergism. In R. P. Mouton, W. Brumfitt and J. M. T. Hamilton-Miller (eds.) The Rational Choice of Antibacterial Agents, pp. 81–88. ( London: Kluwer Harrap Handbooks )Google Scholar
  18. 18.
    Lacey, R. W. (1978). The suppression of the appearance of bacterial mutants by combined antibacterial therapy. J. Antimicrob. Chemother., 4, 391PubMedCrossRefGoogle Scholar
  19. 19.
    Hamilton-Miller, J. M. T. and Brumfitt, W. (1975). Clinical aspects of in vitro antimicrobial synergism. In R. P. Mouton, W. Brumfitt and J. M. T. Hamilton-Miller (eds.) The Rational Choice of Antibacterial Agents, pp. 89–101. ( London: Kluwer Harrap Handbooks )Google Scholar
  20. 20.
    Kaipainen, W. J. (1952). Effect of antibiotic combinations on bacterial resistance. Ann. Med. Exp. Biol. Fenn., 30, 61PubMedGoogle Scholar
  21. 21.
    Darrell, J. H., Garrod, L. P. and Waterworth, P. M. (1968). Trimethoprim: laboratory and clinical studies. J. Clin. Pathol., 21, 202PubMedCrossRefGoogle Scholar
  22. 22.
    Emmerson, A. M. et al. (1978). Unpublished data cited by Reeves, D. S., Bint, A. J. and Bullock, D. W. Use of antibiotics. Sulphonamides, co-trimoxazole and tetracyclines. Br. Med. J., 2, 410Google Scholar
  23. 23.
    Greenwood, D. and Andrew, J. (1978). Rifampicin plus nalidixic acid: a rational combination for the treatment of urinary infection. J. Antimicrob. Chemother., 4, 533PubMedCrossRefGoogle Scholar
  24. 24.
    Harvey, R. J. (1978). Antagonistic interaction of rifampicin and trimethoprim. J. Antimicrob. Chemother., 4, 315PubMedCrossRefGoogle Scholar
  25. 25.
    Leigh, D. A., Simmons, K. and Norman, E. (1974). Bacterial flora of the appendix fossa in appendicitis and postoperative wound infection. J. Clin. Pathol., 27, 997PubMedCrossRefGoogle Scholar
  26. 26.
    Ingham, H. R., Sisson, P. R., Tharagonnet, D., Selkon, J. B. and Codd, A. A. (1977). Inhibition of phagocytosis in vitro by obligate anaerobes. Lancet, 2, 1252PubMedCrossRefGoogle Scholar
  27. 27.
    Anderson, J. D. (1975). Factors that may prevent transfer of antibiotic resistance between Gram-negative bacteria in the gut. J. Med. Microbiol., 8, 83PubMedCrossRefGoogle Scholar
  28. 26.
    Salem, A. R., Jackson, D. D. and McFadzean, J. A. (1975). An investigation of interactions between metronidazole (“F1agyI”) and other antibacterial agents. J. Antimicrob. Chemother., 7, 387CrossRefGoogle Scholar
  29. 29.
    Okubadejo, O. A. and Allen, J. (1975). Combined activity of clindamycin and gentamicin on Bacteroides fragilis and other bacteria. J. Antimicrob. Chemother., 1, 403PubMedCrossRefGoogle Scholar
  30. 30.
    Fass, R. J., Rotilie, C. A. and Prior, R. B. (1974). Interaction of clindamycin and gentamicin in vitro. Antimicrob. Agents Chemother., 7, 582Google Scholar
  31. 31.
    Snyder, R. J., Wilkowske, C. J. and Washington, J. A. (1975). Bactericidal activity of combinations of gentamicin with penicillin or clindamycin against Streptococcus mutans. Antimicrob. Agents Chemother., 8, 333Google Scholar
  32. 32.
    Meers, P. D. (1973). Bacteroides infections. Lancet, 2, 573PubMedCrossRefGoogle Scholar
  33. 33.
    Storring, R. A., Jameson, B., McElwain, T. J., Wiltsaw, E., Spiers, A. S. D. and Gaya, H. (1977). Oral non-absorbed antibiotics prevent infection in acute nonlymphoblastic leukaemia. Lancet, 2, 837PubMedCrossRefGoogle Scholar
  34. 34.
    Watson, J. G. and Jameson, B. (1979). Antibiotic prophylaxis for patients in protective isolation. Lancet, 1, 1183PubMedCrossRefGoogle Scholar
  35. 35.
    Enno, A., Catowsky, D., Darrell, J., Goldman, J. M., Hows, J. and Galton, D. A. G. (1978). Co-trimoxazole for prevention of infection in acute leukaemia. Lancet, 2, 395PubMedCrossRefGoogle Scholar
  36. 36.
    Lowenthal, R. M., Grossman, L., Goldman, J. M., Storring, R. A., Buskard, N. A., Park, D. S., Spiers, A. S. D. and Galton, D. A. G. (1975). Granulocyte transfusions in treatment of infections in patients with acute leukaemia and aplastic anaemia. Lancet, 1, 353PubMedCrossRefGoogle Scholar
  37. 37.
    The European Organisation for Research on Treatment of Cancer International Antimicrobial Therapy Project Group. (1978). Three antibiotic regimens in the treatment of infection in febrile granulocytopenic patients with cancer. J. Infect. Dis., 137, 14Google Scholar
  38. 38.
    Tattersall, M. H. N., Spiers, A. S. D. and Darrell, J. H. (1972). Initial therapy with combination of five antibiotics in febrile patients with leukaemia and neutropenia. Lancet, 1, 162PubMedCrossRefGoogle Scholar
  39. 39.
    Falk, R. H., Gillett, A. P., Wise, R. and Melikian, V. (1977). Tobramycin and clindamycin in the treatment of febrile leukaemic patients. I. Antimicrob. Chemother., 3, 317CrossRefGoogle Scholar
  40. 40.
    Papayannis, A. G., Thomopoulos, D., Voulgaris, E., Scliros, Ph. and Gardikas, C. (1977). Tobramycin-cephalothin treatment in leukaemic and neutropenic patients with severe infection. J. Antimicrob. Chemother., 3, 311PubMedCrossRefGoogle Scholar
  41. 41.
    Jawetz, E., Gunnison, J. B., Speck, R. S. and Coleman, V. R. (1951). Studies on antibiotic synergism and antagonism. The interference of chloramphenicol with the action of penicillin. Arch. Intern. Med., 87, 349CrossRefGoogle Scholar
  42. 42.
    Lepper, M. H. and Dowling, H. F. (1951). Treatment of pneumococcic meningitis with penicillin compared with penicillin plus aureomycin. Arch. Intern. Med., 88, 489CrossRefGoogle Scholar
  43. 43.
    Wallace, J. F., Smith, R. H., Garcia, M. and Petersdorf, R. G. (1967). Studies on the pathogenesis of meningitis. VI. Antagonism between penicillin and chloramphenicol in experimental pneumococcal meningitis. J. Lab. Clin. Med., 70, 408PubMedGoogle Scholar
  44. 44.
    Ahern, J. J. and Kirby, W. M. M. (1953). Lack of interference of aureomycin with penicillin in treatment of pneumococcic pneumonia. Arch. Intern. Med., 91, 197CrossRefGoogle Scholar
  45. 45.
    Davis, W. M. (1954). Successful treatment of pneumococcal pneumonia with combination of chloramphenicol and penicillin. Am. J. Med. Sci., 227, 391PubMedCrossRefGoogle Scholar
  46. 46.
    Donald, G. and McKendrick, W. (1968). The treatment of pyogenic meningitis. J. Neurol. Neurosurg. Psychiat., 31, 528CrossRefGoogle Scholar
  47. 47.
    Forbes, J. A. (1962). Purulent meningitis: principles and results of revised standardised treatment in 281 cases. Aust. Ann. Med., 11, 92PubMedGoogle Scholar
  48. 48.
    Christie, A. B. (1974). The treatment of pyogenic bacterial meningitis. Prescribers’ J., 14, 110Google Scholar
  49. 49.
    Lorber, J. (1974). Treatment of neonatal meningitis. Prescribers’ J., 16, 82Google Scholar
  50. 50.
    Strasbaugh, L. J., Mandaleris, C. D., Sherertz, R. J. and Sande, M. A. (1975). In vivo antagonism between gentamicin and chloramphenicol in rabbits with Gram-negative meningitis. Clin. Res., 23, 312AGoogle Scholar
  51. 51.
    Rahal, J. J. (1978). Antibiotic combinations. The clinical relevance of synergy and antagonism. Medicine, 57, 179PubMedCrossRefGoogle Scholar
  52. 52.
    Seidl, L. G., Thornton, G. F., Smith, J. W. and Cluff, L. E. (1966). Studies on the epidemiology of adverse drug reactions. III. Reactions in patients on a general medical service. Johns Hopkins Hosp. Bull., 119, 229Google Scholar
  53. 53.
    Koch-Weser, J., Sidel, V. W., Federman, R. N., Kanarek, P., Finer, D. C. and Eaton, A. E. (1970). Adverse effects of sodium colistimethate Manifestations and specific reaction rates during 317 courses of therapy. Ann. Intern. Med., 72, 857PubMedGoogle Scholar
  54. 54.
    Dowling, H. F. and Lepper, M. H. (1964). Hepatic reactions to tetracycline. J. Am. Med. Assoc., 188, 307CrossRefGoogle Scholar
  55. 55.
    McLaughlin, J. E. and Reeves, D. S. (1971). Clinical and laboratory evidence for inactivation of gentamicin by carbenicillin. Lancet, 1, 261PubMedCrossRefGoogle Scholar
  56. 56.
    Noone, P. and Pattison, J. R. (1971). Therapeutic implications of interaction of gentamicin and penicillins. Lancet, 2, 575PubMedGoogle Scholar
  57. 57.
    Lynn, B. (1974). Antibiotic incompatibilities and interactions. In J. Klastersky (ed.) Clinical Use of Combinations of Antibiotics, pp. 24–51. ( London: Hodder and Stoughton )Google Scholar
  58. 58.
    Bushby, S. R. M. (1969). Combined antibacterial action in vitro of trimethoprim and sulphonamides. Postgrad. Med. J., 45 ( Suppl. Nov. ), 10Google Scholar
  59. 59.
    Brumfitt, W. and Pursell, R. (1972). Double blind trial to compare ampicillin, cephalexin, co-trimoxazole and trimethoprim in treatment of urinary infection. Br. Med. J., 2, 673PubMedCrossRefGoogle Scholar
  60. 60.
    Simmons, N. A. (1975). Antibiotic synergy. J. Antimicrob. Chemother., 1, 257PubMedCrossRefGoogle Scholar
  61. 61.
    Sabath, L. D., Steinhauer, B. W. and Finland, M. (1963). Combined action of penicillin G with methicillin or oxacillin against Staphylococcus aureus. N. Engl. J. Med., 268, 284CrossRefGoogle Scholar
  62. 62.
    Hamilton-Miller, J. M. T., Smith, J. T. and Knox, R. (1964). Potentiation of penicillin action by inhibition of penicillinase. Nature, 201, 867PubMedCrossRefGoogle Scholar
  63. 63.
    Sabath, L. D. and Abraham, E. P. (1964). Synergistic action of penicillins and cephalosporins against Pseudomonas pyocyanea. Nature, 204, 1066Google Scholar
  64. 64.
    Sutherland, R. and Batchelor, F. R. (1964). Synergistic activity of penicillins against penicillinase-producing Gram-negative bacilli. Nature, 201, 868PubMedCrossRefGoogle Scholar
  65. 65.
    Garau, J. and Kabins, S. A. (1979). Enhanced activity of ampicillin by oxacillin against enterococci. J. Antimicrob. Chemother., 5, 31PubMedCrossRefGoogle Scholar
  66. 66.
    Neu, H. C. (1976). Synergy of Mecillinam, a beta-amidinopenicillanic acid derivative, combined with beta-lactam antibiotics. Antimicrob. Agents Chemother, 10, 535PubMedGoogle Scholar
  67. 67.
    Grunberg, E., Cleland, R., Beskid, G. and DeLorenzo, W. F. (1976). In vivo synergy between 6 ß-amidinopenicillanic acid derivatives and other antibiotics. Antimicrob. Agents Chemother., 9, 589Google Scholar
  68. 68.
    Pines, A., Nandi, A. R., Raafat, H. and Rahman, M. (1977). Pivmecillinam and amoxycillin as combined treatment in purulent exacerbations of chronic bronchitis. J. Antimicrob. Chemother., 3 ( Suppl. B), 141Google Scholar
  69. 69.
    Shanson, D. C., Brigden, W. and Weaver, E. J. M. (1977). Salmonella enteritidis endocarditis. Br. Med. J., 1, 612CrossRefGoogle Scholar
  70. 70.
    Watt, B. (1978). Streptococcal endocarditis: a penicillin alone or a penicillin with an aminoglycoside?, Antimicrob. Chemother., 4, 107CrossRefGoogle Scholar
  71. 71.
    Jawetz, E. and Gunnison, J. B. (1950). The determination of sensitivity to penicillin and streptomycin of enterococci and streptococci of the viridans group. J. Lab. Clin. Med., 35, 488Google Scholar
  72. 72.
    Garrod, L. P. (1953). Combined chemotherapy in bacterial infections. Br. Med. J., 1, 953PubMedCrossRefGoogle Scholar
  73. 73.
    Farrell, W., Wilks, M. and Drasar, F. A. (1979). Synergy between aminoglycosides and semi-synthetic penicillins against Gentamicin-resistant Gram-negative rods. J. Antimicrob. Chemother 5, 23PubMedCrossRefGoogle Scholar
  74. 74.
    Bulger, R. J. and Kirby, W. M. M. (1963). Gentamicin and ampicillin. Synergism with other antibiotics, Am. J. Med. Sci., 246, 717PubMedCrossRefGoogle Scholar
  75. 75.
    Marsh, F. P. (1978). Do cephalosporins potentiate or antagonise aminoglycoside nephrotoxicity ? J. Antimicrob. Chemother., 4, 103PubMedCrossRefGoogle Scholar
  76. 76.
    Marsh, F. P. (1978). Do cephalosporins potentiate or antagonise aminoglycoside nephrotoxicity? J. Antimicrob. Chemother., 4, 577CrossRefGoogle Scholar
  77. 77.
    Simmons, N. A. (1977). Synergy and rifampicin. J. Antimicrob. Chemother., 3, 109PubMedCrossRefGoogle Scholar
  78. 78.
    Jensen, K. (1968). Methicillin resistant staphylococci, Lancet, 2, 1078PubMedCrossRefGoogle Scholar
  79. 79.
    Peard, M. C., Fleck, D. G., Garrod, L. P. and Waterworth, P. M. (1970). Combined rifampicin and erythromycin for bacterial endocarditis. Br. Med. J., 4, 410PubMedCrossRefGoogle Scholar
  80. 80.
    Shanson, D. C. and Leung, T. (1976). Susceptibility of Salmonella typhi to rifamycins and novobiocin. J. Antimicrob. Chemother, 2, 81PubMedCrossRefGoogle Scholar
  81. 81.
    Arioli, V., Pallanza, R., Nicolis, F. B. and Furesz, S. (1970), Experimental data on the interaction between rifampicin and tetracycline. Progress in Antimicrobial and Anticancer Chemotherapy, Proceedings of the 6th International Congress of Chemotherapy, p, 339, ( Tokyo: University of Tokyo Press )Google Scholar
  82. 82.
    Perez Urena, M. T., Barasoain, I., Espinoza, M., Garcia, E. and Portoles, A. (1975). Evaluation of different antibiotic actions combined with rifampicin. Chemotherapy, 21, 82CrossRefGoogle Scholar
  83. 83.
    Traub, W. H. and Kleber, I. (1975). In vitro additive effect of polymyxin B and rifampicin against Serratia marcescens. Antimicrob. Agents Chemother., 7, 874Google Scholar
  84. 84.
    Hamilton-Miller, J. M, T. and Brumfitt, W. (1976). Tritnethoprim and rifampicin: pharmacokinetic studies in man. J. Antimicrob. Chemother., 2, 181Google Scholar
  85. 85.
    Acocella, G. and Scotti, R. (1976). Kinetic studies on the combination rifampicintrimethoprim in man. Absorption and urinary excretion after administration to healthy volunteers of single doses of the two compounds alone and in combination, and the combination over a period of one week. J. Antimicrob. Chemother., 2, 271PubMedCrossRefGoogle Scholar
  86. 86.
    Emmerson, A. M., Grüneberg, R. N. and Johnson, E. S. (1978). The pharmacokinetics in man of a combination of rifampicin and trimethoprim. J. Antimicrob. Chemother., 4, 523PubMedCrossRefGoogle Scholar
  87. 87.
    Kerry, D. W., Hamilton-Miller, J. M. T. and Brumfitt, W. (1975). Trimethoprim and rifampicin: in vitro activities separately and in combination. J. Antimicrob. Chemother., 1, 417PubMedCrossRefGoogle Scholar
  88. 88.
    Griineberg, R. N. and Emmerson, A. M. (1977). The interactions between rifampicin and trimethoprim: an in vitro study. J. Antimicrob. Chemother., 3, 453CrossRefGoogle Scholar
  89. 89.
    Farrell, W., Wilks, M. and Drasar, F. A. (1977). The action of trimethoprim and rifampicin in combination against Gram-negative rods resistant to gentamicin. J. Antimicrob. Chemother., 3, 459PubMedCrossRefGoogle Scholar
  90. 90.
    Brumfitt, W., Percival, A. and Leigh, D. A. (1967). Clinical and laboratory studies with carbenicillin. Lancet, 1, 1289PubMedCrossRefGoogle Scholar
  91. 91.
    Lin, M. Y. C., Tuazon, C. U. and Sheagren, J. N. (1979). Synergism of aminoglycos ides and carbenicillin against resistant strains of Serratia marcescens. J. Antimicrob. Chemother., 5, 37CrossRefGoogle Scholar
  92. 92.
    Watanakunakorn, C. and Glotzbecker, C. (1979). In vitro activity of carbenicillin, ticarcillin, aminoglycosides and combinations against Staphylococcus aureus. J. Antimicrob. Chemother., 5, 151PubMedCrossRefGoogle Scholar

Copyright information

© MTP Press Limited 1980

Authors and Affiliations

  • N. A. Simmons

There are no affiliations available

Personalised recommendations