The cephalosporin group of antibiotics

  • Rosamund J. Williams
  • J. D. Williams
Part of the Current Status of Modern Therapy book series (CSMT, volume 4)


The remarkable growth in the development of the cephalosporin group of antibiotics stems from the isolation of cephalosporin C in 19551. The recognition of the active agents, however, preceded this by some years. In 1945, Brotzu, at that time Rector in the Sicilian University of Cagliari, noted that the seawater near a sewage outlet in that town appeared to be self-purifying and proposed that this might be due in part to bacterial antagonism. Brotzu examined the microbial flora of the seawater and isolated a fungus which he concluded to be similar to Cephalosporium acremonium. This fungus appeared to have an inhibitory effect on certain bacteria in vitro and Brotzu used the crude products of its growth with some success for treating typhoid fever and brucellosis. In 1948 he published his findings in a journal that he founded for the purpose since no other learned journal would accept the work2. He also sent a culture of his fungus to Oxford in England.


Antibacterial Activity Permeability Barrier Penicillin Allergy Current Chemotherapy Peptidoglycan Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Newton, G. G. F. and Abraham, E. P. (1955). Cephalosporin, C, a new antibiotic containing sulphur and D-o.-aminoadipic acid. Nature, 175, 548PubMedCrossRefGoogle Scholar
  2. 2.
    Brotzu, G. (1948). Lavori dell’istituto d’Igiene di CagliariGoogle Scholar
  3. 3.
    Burton, H. S. and Abraham, E. P. (1951). Isolation of antibiotics from a species of Cephalosporium. Cephalosporins P,, P2, P3, P4 and P5. Biochem. J., 50, 168PubMedGoogle Scholar
  4. 4.
    Crawford, K., Heatley, N. G., Boyd, P. F., Hale, C. W., Kelly, B. K., Miller, G. A. and Smith, N. (1952). Antibiotic production by a species of Cephalosporium. J. Gen. Microbiol., 6, 47PubMedGoogle Scholar
  5. 5.
    Abraham, E. P. and Newton, G. G. F. (1954). Synthesis of D-8-amino-5-carboxyvalerylglycine (a degradation product of cephalosporin N) and of DL-5-amino8-carboxyvaleramide. Biochem. J., 58, 266PubMedGoogle Scholar
  6. 6.
    Godtfredsen, W. O., von Daehne, W. and van Gedal, S. (1965). The stereo-chemistry of fusidic acid. Tetrahedron, 21, 3505PubMedCrossRefGoogle Scholar
  7. 7.
    Florey, H. W. (1955). Antibiotic products of versatile fungus. Ann. Int. Med., 43, 480PubMedGoogle Scholar
  8. 8.
    Loder, P. B., Newton, G. G. F. and Abraham, E. P. (1961). The cephalosporin C nucleus (7-aminocephalosporanic acid) and some of its derivatives. Biochem. J., 79, 408PubMedGoogle Scholar
  9. 9.
    Strominger, J. L., Izaki, K., Matsuhashi, M. and Tipper, D. J. (1967). Peptidoglycan transpeptidase and D-alanine carboxypeptidase: penicillin-sensitive enzymatic reactions. Proc. Fed. Am. Soc. Exp. Biol., 26, 9Google Scholar
  10. 10.
    Tipper, D. J. and Strominger, J. L. (1965). Mechanism of action of penicillins: A proposal based on their structural similarity to acyl-D-alanyl-D-alanine. Proc. Natl. Acad. Sci. USA, 54, 1133PubMedCrossRefGoogle Scholar
  11. 11.
    O’Callaghan, C. H. and Muggleton, P. W. (1972). Biological reactions of cephalosporins and penicillins. In E. H. Flynn (ed.) Cephalosporins and Penicillins, p. 439. ( New York and London: Academic Press )Google Scholar
  12. 12.
    Greenwood, D. and O’Grady,.F. (1973). Comparison of the responses of Escherichia coli and Proteus mirabilis to seven beta-lactam antibiotics. J. Infect. Dis., 128, 211PubMedCrossRefGoogle Scholar
  13. 13.
    Spratt, B. G. (1975). Distinct penicillin binding proteins involved in the division, elongation and shape of Escherichia coli K12. Proc. Natl. Acad. Sci., 72, 2999PubMedCrossRefGoogle Scholar
  14. 14.
    Blumberg, P. M. and Strominger, J. L. (1974). Interaction of penicillin with the bacterial cell: penicillin-binding proteins and penicillin-sensitive enzymes. Bacterial. Rev., 38, 291Google Scholar
  15. 15.
    Rolinson, G. N., MacDonald, A. C. and Wilson, D. A. (1977). Bactericidal action of beta-lactam antibiotics on Escherichia coli with particular reference to ampicillin and amoxycillin. J. Antimicrob. Chemother., 3, 541PubMedCrossRefGoogle Scholar
  16. 16.
    Matthew, M. and Harris, A. M. (1976). Identification of beta-lactamases by analytical isoelectric focussing: correlation with bacterial taxonomy. J. Gen. Microbiol., 94, 55PubMedGoogle Scholar
  17. 17.
    Sykes, R. B. and Richmond, M. H. (1971). R factors, beta-lactamase and carbenicillin-resistant Pseudomonas aeruginosa. Lancet, 2, 342CrossRefGoogle Scholar
  18. 18.
    Hennessey, T. D. (1967). Inducible beta-lactamase in Enterobacter. I. Gen. Microbiol., 49, 277Google Scholar
  19. 19.
    Garber, N. and Friedman, J. (1970). Beta-lactamase and the resistance of Pseudomonas aeruginosa to various penicillins and cephalosporins. 1. Gen. Microbiol., 64, 343Google Scholar
  20. 20.
    Sykes, R. B. and Matthew, M. (1976). The beta-lactamases of Gram-negative bacteria and their role in resistance to beta-lactam antibiotics. I. Antimicrob. Chemother., 2, 115CrossRefGoogle Scholar
  21. 21.
    Matthew, M. (1979). Plasmid-mediated beta-lactamases of Gram-negative bacteria: properties and distribution. J. Antimicrob. Chemother., 5, Issue 4. (In press)Google Scholar
  22. 22.
    Medeiros, A. A. and O’Brien, T. F. (1975). Ampicillin-resistant Haemophilus influenzae type B possessing a TEM-type beta-lactamase but little permeability barrier to ampicillin. Lancet, 1, 716PubMedCrossRefGoogle Scholar
  23. 23.
    Aswapokee, N., Aswapokee, P., Fu, K. P. and Neu, H. C. (1978). In vitro activity and beta-lactamase stability of BL-S786 compared with those of other cephalosporins. Antimicrob. Agents Chemother., 14, 1PubMedGoogle Scholar
  24. 24.
    Johnson, V. L., Smith, I. M. and Habte-Gabr, E. (1978). Treatment with tobramycin and cefamandole, alone or together, in mice infected with Escherichia coli or Staphylococcus aureus. In: Current Chemotherapy. Proc. 10th International Congress of Chemotherapy, Vol. II, p. 789. (New York: American Society for Microbiology)Google Scholar
  25. 25.
    Brogden, R. N., Heel, R. C., Speight, T. M. and Avery, G. S. (1979). Cefoxitin: A review of its antibacterial activity, pharmacological properties and therapeutic use. - Drugs, 17, 1Google Scholar
  26. 26.
    Ernst, E. Chaim., Berger, S., Barza, M., Jacobus, N. V. and Tally, F. P. (1976). Activity of cefamandole and other cephalosporins against aerobic and anaerobic bacteria. Antimicrob. Agents Chemother., 9, 852PubMedGoogle Scholar
  27. 27.
    Wise, R., Rollason, T., Logan, M., Andrews, J. M. and Bedford, K. A. (1978). HR 756, a highly active cephalosporin: comparison with cefazolin and carbenicillin. Antimicrob. Agents Chemother., 14, 807PubMedGoogle Scholar
  28. 28.
    Sosna, J. P., Murray, P. R. and Medoff, G. (1978). Comparison of the in vitro activities of HR 756 with cephalothin, cefoxitin and cefamandole. Antimicrob. Agents Chemother., 14, 876PubMedGoogle Scholar
  29. 29.
    Shadomy, S., Wagner, G. and Carver, M. (1977). In vitro activities of five oral cephalosporins against aerobic pathogenic bacteria. Antimicrob. Agents Chemother., 12, 609PubMedGoogle Scholar
  30. 30.
    Bach, V. T., Khurana, M. M. and Thadepalli, H. (1978). In vitro activity of cefaclor against aerobic and anaerobic bacteria. Antimicrob. Agents Chemother., 13, 210PubMedGoogle Scholar
  31. 31.
    Kammer, R. B., Preston, D. A., Turner, J. R. and Hawley, L. C. (1975). Rapid detection of ampicillin-resistant Haemophilus influenzae and their susceptibility to sixteen antibiotics. Antimicrob. Agents Chemother., 8, 91PubMedGoogle Scholar
  32. 32.
    Drasar, W. A., Farrell, W., Howard, A. J., Hince, C., Leung, T. and Williams, J. D. (1978). Activity of HR 756 against Haemophilus influenzae, Bacteroides fragilis and Gram-negative rods..7. Antimicrob. Chemother., 4, 445CrossRefGoogle Scholar
  33. 33.
    Williams, J. D. and Andrews, J. (1974). Sensitivity of Haemophilus influenzae to antibiotics. Brit. Med. 1, 134CrossRefGoogle Scholar
  34. 34.
    Yourassowsky, E., Schoutens, E. and Vanderlinden, M. P. (1976). Antibacterial activity of eight cephalosporins against Haemophilus influenzae and Streptococcus pneumoniae. J. Antimicrob. Chemother., 2, 55PubMedCrossRefGoogle Scholar
  35. 35.
    Sinai, R., Hammerberg, S., Marks, M. I. and Pai, C. H. (1978). In vitro susceptibility of Haemophilus influenzae to sulfamethoxazole-trimethoprim and cefaclor, cephalexin and cephradine. Antimicrob. Agents Chemother„ 13, 861PubMedGoogle Scholar
  36. 36.
    Strausbaugh, L. J., Mikhail, I. A. and Edman, D. C. (1978). Comparative in vitro activity of five cephalosporin antibiotics against Salmonellae. Antimicrob. Agents Chemother., 13, 134PubMedGoogle Scholar
  37. 37.
    Verbist, L. (1976). Comparison of the antibacterial activity of nine cephalosporins against Enterobacteriaceae and non-fermentative Gram-negative bacilli. Antimicrob. Agents Chemother., 10, 657PubMedGoogle Scholar
  38. 38.
    Chabbert, Y. A. and Lutz, A. J. (1978). HR 756, the syn isomer of a new methoxyimino cephalosporin with unusual antibacterial activity. Antimicrob. Agents Chemother., 14, 749PubMedGoogle Scholar
  39. 39.
    Chow, A. W. and Bednorz, D. (1978). Comparative in vitro activity of newer cephalosporins against anaerobic bacteria. Antimicrob. Agents Chemother., 14, 668PubMedGoogle Scholar
  40. 40.
    Vanhoof, R., Vanderlinden, M. P., Dierickx, R., Lauwers, S., Yourassowsky, E. and Butzler, J. P. (1978). Susceptibility of Campylobacter fetus subsp. jejuni to twenty-nine antimicrobial agents. Antimicrob. Agents Chemother., 14, 553PubMedGoogle Scholar
  41. 41.
    Goldstein, E. J. C., Sutter, V. L. and Finegold, S. M. (1978). Susceptibility of Eikenella corrodens to ten cephalosporins. Antimicrob. Agents Chemother., 14, 639PubMedGoogle Scholar
  42. 42.
    Appelbaum, P. C. and Chatterton, S. A. (1978). Susceptibility of anaerobic bacteria to ten antimicrobial agents. Antimicrob. Agents Chemother., 14, 371PubMedGoogle Scholar
  43. 43.
    Heymes, R., Lutz, A. and Schrinner, E. (1977). Experimental evaluation of HR 756, a new cephalosporin derivative. In Current Chemotherapy,Proc. 10th International Congress of Chemotherapy, Vol. II, p. 823. (New York: American Society for Microbiology)Google Scholar
  44. 44.
    Okonogi, K. Kida, M., Yoneda, M., Itoh, J. and Mitsuhashi, S. (1977). SCE-129, a new antipseudomonal cephalosporin and its biochemical properties. In Current Chemotherapy, Proc. 10th International Congress of Chemotherapy, Vol. II, p. 838. ( New York: American Society for Microbiology )Google Scholar
  45. 45.
    Tosch, W., Kradolfer, F., Konopka, E. A., Regos, J , Zimmermann, W. and Zak, O. (1971). In vitro characterization of CGP 7174/E, a cephalosporin active against Pseudomonas. In Current Chemotherapy,Proc. 10th International Congress of Chemotherapy, Vol. II, p. 843. (New York: American Society for Microbiology)Google Scholar
  46. 46.
    Spyker, D. A., Thomas, B. L., Sande, M. A. and Bolton, W. K. (1978). Pharmacokinetics of cefaclor and cephalexin: dosage nomograms for impaired renal function. Antimicrob. Agents Chemother., 14, 172PubMedGoogle Scholar
  47. 47.
    Neiss, E. S. (1973). Cephradine — A summary of preclinical studies and clinical pharmacology. J. Irish Med. Assoc., 66 (Suppl.), 1Google Scholar
  48. 48.
    Santoro, J., Agarwal, B. N., Martinelli, R., Wenger, N. and Levison, M. E. (1978). Pharmacology of cefaclor in normal volunteers and patients with renal failure. Antimicrob. Agents Chemother., 13, 951PubMedGoogle Scholar
  49. 49.
    Berman, S. J., Boughton, W. H., Sugihara, J. G., Wong, E. G. C., Sato, M. M. and Siemsen, A. W. (1978). Pharmacokinetics of cefaclor in patients with end stage renal disease and during haemodialysis. Antimicrob. Agents Chemother., 14, 281PubMedGoogle Scholar
  50. 50.
    Regamey, C. and Vonlanthen, M. (1977). Pharmacokinetics of cefamandole and cephalothin after intravenous administration in healthy adult volunteers and in vitro antibacterial spectrum. In Current Chemotherapy, Proc. 10th International Congress of Chemotherapy, Vol. II, p. 793. ( New York: American Society for Microbiology )Google Scholar
  51. 51.
    Kucers, A. and Bennett, N.McK. (1975). The Use of Antibiotics. 2nd ed. (Heinemann)Google Scholar
  52. 52.
    Ratzan, K. R., Ruiz, C. and Irvin, G. L. III. (1974). Biliary tract excretion of cefazolin, cephalothin, and cephaloridine in the presence of biliary tract disease. Antimicrob. Agents Chemother., 6, 426PubMedGoogle Scholar
  53. 53.
    Naber, K. G. and Zinati, A. H. (1977). Pharmacokinetic studies and therapeutic evaluation of cefamandole in urology. In Current Chemotherapy, Proc. 10th International Congress of Chemotherapy, Vol. II, p. 801. ( New York: American Society for Microbiology )Google Scholar
  54. 54.
    Daikos, G. K., Kosmidis, J. C., Stathakis, Ch. and Giamarellou, H. (1977). Cefuroxime: antimicrobial activity, human pharmacokinetics and therapeutic efficacy. I. Antimicrob. Chemother., 3, 555CrossRefGoogle Scholar
  55. 55.
    Fitzgerald, R. H. Jr., Kelly, P. J., Snyder, R. J. and Washington, J. A. II. (1978). Penetration of methicillin, oxacillin and cephalothin into bone and synovial tissues. Antimicrob. Agents Chemother., 14, 723PubMedGoogle Scholar
  56. 56.
    Quinn, E. L., Madhavan, T., Wixson, R., Guise, E., Levin, N., Block, M., Burch, K., Fisher, E., Suarez, A. and del Busto, R. (1977). Cefamandole: observations on its spectrum, concentration in bone and bile, excretion in renal failure, and clinical efficacy. In Current Chemotherapy, Proc. 10th International Congress of Chemotherapy, Vol. II, p. 803. ( New York: American Society for Microbiology )Google Scholar
  57. 57.
    Ellis, B. W., Stanbridge, R. de L., Sikorski, J. M., Dudley, H. A. F. and Spencer, R. C. (1975). Penetration into inflammatory exudate and wounds of two cephalosporins for the prevention of surgical infections. J. Antimicrob. Chemother., 1, 291PubMedCrossRefGoogle Scholar
  58. 58.
    Gerding, D. N., Peterson, L. R., Legler, D. C., Hall, W. H. and Schierl, E. A. (1978). Ascitic fluid cephalosporin concentrations: influence of protein binding and serum pharmacokinetics. Antimicrob. Agents Chemother., 14, 234PubMedGoogle Scholar
  59. 59.
    Waterman, N. G. and Scharfenberger, L. F. (1978). Concentration relationships of cefaclor in serum, interstitial fluid, bile and urine of dogs. Antimicrob. Agents Chemother., 14, 614PubMedGoogle Scholar
  60. 60.
    Tschirkov, T., Eigel, P., Satter, P. and Knothe, H. (1977). Cefamandole and cephalothin in open-heart surgery: comparative pharmacokinetic appraisal. In Current Chemotherapy, Proc. 10th International Congress of Chemotherapy, Vol. II, p. 821. (New York:-American Society for Microbiology)Google Scholar
  61. 61.
    Bergogne-Berezin, E., Kafe, H., Berthelot, G., Morel, C. and Benard, Y. (1977). Pharmacokinetic study of cefoxitin in bronchial secretions. In Current Chemotherapy, Proc. 10th International Congress of Chemotherapy, Vol. II, p. 758. ( New York: American Society for Microbiology )Google Scholar
  62. 62.
    Axelrod, J. L. and Kochman, R. S. (1977). Cefamandole concentrations in human aqueous humor. In Current Chemotherapy, Proc. 10th International Congress of Chemotherapy, Vol. II, p. 799. ( New York: American Society for Microbiology )Google Scholar
  63. 63.
    Vianna, N. J. and Kaye, D. (1967). Penetration of cephalothin into cerebro-spinal fluid. Am. I. Med. Sci., 254, 216CrossRefGoogle Scholar
  64. 64.
    Oppenheimer, S., Beaty, H. N. and Petersdorf, R. G. (1969). Pathogenesis of meningitis. viii. Cerebro-spinal fluid and blood concentrations of methicillin, cephalothin, cephaloridine in experimental pneumococcal meningitis.`. Lab. Clin. Med., 73, 535Google Scholar
  65. 65.
    Brown, J. D., Mathies, A. W., Irler, D., Warren, W. S. and Leedom, J. M. (1969). Variable results of cephalothin therapy for meningococcal meningitis. In G. L. Hobby (ed.) Antimicrobial Agents and Chemotherapy, p. 432. ( New York: American Society for Microbiology )Google Scholar
  66. 66.
    Editorial. (1973). Antibiotic-induced meningitis. Brit. Med. I., 3, 366Google Scholar
  67. 67.
    Ruedy, J. (1967). The concentration of cephaloridine in cerebrospinal fluid of rabbits with experimental meningitis. Postgrad. Med. q., 43, (Suppl.), 146CrossRefGoogle Scholar
  68. 68.
    Lerner, P. 1. (1971). The penetration of cephaloridine into cerebrospinal fluid. Am. J. Med. Sci., 262, 321PubMedCrossRefGoogle Scholar
  69. 69.
    Walker, S. H. and Gahol, V. P. (1978). Pharmacokinetics of cefamandole in infants and children. Antimicrob. Agents Chemother., 14, 315PubMedGoogle Scholar
  70. 70.
    Liu, C., Baker, L. H., Gerjarusak, P., Romig, D. A., Hinthorn, D. R., Smith, H. and Harris, J. L. (1975). Penetration of cefazolin and cefamandole into cerebrospinal fluid. In 9th International Congress of Chemotherapy Abstract no. M-223Google Scholar
  71. 71.
    Hinthorn, D. R., Liu, C., Hodges, G. R., Dworzack, D. L., Rósett, W. and Harms, J. (1977). Cerebrospinal fluid penetration of cefoxitin and experience in treatment of bacterial infections. In Current Chemotherapy, Proc. 10th International Congress of Chemotherapy, Vol. II, p. 757. ( New York: American Society for Microbiology )Google Scholar
  72. 72.
    Brogard, J. M., Haegele, P., Dorner, M. and Lavillaureux, J. (1973). Biliary excretion of a new semisynthetic cephalosporin, cephacetrile. Antimicrob. Agents Chemother., 3, 19PubMedGoogle Scholar
  73. 73.
    Ram, M. D. and Watanatittan, S. (1973). Levels of cefazolin in human bile. J. Infect. Dis. (Suppl.), 128, 361CrossRefGoogle Scholar
  74. 74.
    Nishida, M., Murakawa, T., Matsubara, T., Kohno, Y., Yokota, Y., Yasutomi, T. and Okamoto, M. (1976). Characteristics of biliary excretion of cefazolin and other cephalosporins with reference to the relationship between serum levels and administration conditions. Chemotherapy, 22, 30PubMedCrossRefGoogle Scholar
  75. 75.
    Sales, J. E. L., Sutcliffe, M. B. and O’Grady, F. (1969). Cephalexin and the biliary tract. In R. O. Foord (ed.) Proc. Symp. Clinical Evaluation of Cephalexin, p. 42. ( London: Royal Society of Medicine )Google Scholar
  76. 76.
    Levine, B. B. (1973). Antigenicity and cross-reactivity of penicillins and cephalosporins. J. Infect. Dis. 128 (Suppl.), S 364CrossRefGoogle Scholar
  77. 77.
    Dewdney, J. M. and Weston, B. (1976). Immune responsiveness to ß-lactam antibiotics. In Proc. 9th International Congress of Chemotherapy, Vol. 4, p. 261. (Plenum Press)Google Scholar
  78. 78.
    Levine, B. B., Redmond, A. P., Fellner, M. J. et al. (1966). Penicillin allergy and the heterogenous immune responses of man to benzyl penicillin. J. Clin. Invest., 45, 1895PubMedCrossRefGoogle Scholar
  79. 79.
    Dash, C. H. (1975). Penicillin allergy and the cephalosporins. J. Antimicrob. Chemother., 1 (Suppl.), 107PubMedGoogle Scholar
  80. 80.
    Levine, B. B. and Zolov, D. M. (1969). Prediction of penicillin allergy by immunological tests. J. Allergy, 43, 231PubMedCrossRefGoogle Scholar
  81. 81.
    Thoburn, R., Johnson, J. E. and Cluff, L. E. (1966). Studies on the epidemiology of adverse drug reactions. IV. The relationship of cephalothin and penicillin allergy. J. Am. Med. Assoc., 198, 345CrossRefGoogle Scholar
  82. 82.
    Sanders, W. E. Jr., Johnson, J. E. and Taggart, J. G. (1974). Adverse reactions to cephalothin and cephapirin. New Engl. J. Med., 290, 424PubMedCrossRefGoogle Scholar
  83. 83.
    Foord, R. D. (1975). Cephaloridine, cephalothin and the kidney. J. Antimicrob. Chemother., 1 (Suppl.), 119PubMedGoogle Scholar
  84. 84.
    Tune, B. M. and Kempson, R. L. (1973). Nephrotoxic drugs (corres.), Brit. Med. J., 3, 635PubMedCrossRefGoogle Scholar
  85. 85.
    Linsell, W. D., Pines, A. and Hayden, J. W. (1967). Hyaline cast formation in patients treated with cephaloridine. J. Clin. Pathol., 20, 857PubMedCrossRefGoogle Scholar
  86. 86.
    Fillastre, J. P., Laumonier, R., Humbert, G., Dubois, D., Metayer, J., Delpech, A., LeRoy, J. and Robert, M. (1973). Acute renal failure associated with combined gentamicin and cephalothin therapy. Brit. Med. J., 2, 396PubMedCrossRefGoogle Scholar
  87. 87.
    Kleinknecht, D., Ganeval, D. and Dioz, D. (1973). Acute renal failure after high112 Antibiotics and Chemotherapy doses of gentamicin and cephalothin. Lancet, 1, 1129PubMedCrossRefGoogle Scholar
  88. 88.
    Wade, J. C., Petty, B. G., Conrad, G., Smith, C. R., Lipsky, J. J., Ellner, J. and Lietman, P. S. (1978). Cephalothin plus an aminoglycoside is more nephrotoxic than methicillin plus an aminoglycoside. Lancet, 2, 604PubMedCrossRefGoogle Scholar
  89. 89.
    Harrison, W. O., Silverblatt, F. J. and Turck, M. (1975). Gentamicin nephrotoxicity; failure of three cephalosporins to potentiate injury in rats. Antimicrob. Agents Chemother., 8, 209PubMedGoogle Scholar
  90. 90.
    Dellinger, P., Murphy, T., Pinn, V., Barza, M. and Weinstein, L. (1976). Protective effect of cephalothin against gentamicin-induced nephrotoxicity in rats. Antimicrob. Agents Chemother., 10, 80Google Scholar
  91. 91.
    Welles, J. S. (1972). Pharmacology and toxicology of cephalosporins. In E. H. Flynn (ed.) Cephalosporins and Penicillins, Chemistry and Biology, p. 583. ( New York: Academic Press )Google Scholar
  92. 92.
    Silverblatt, F., Harrison, W. O. and Turck, M. (1973). Nephrotoxicity of cephalosporin antibiotics in expérimental animals. J. Infect. Dis., 128 (Suppl.), S 367CrossRefGoogle Scholar
  93. 93.
    Wold, J. S., Welles, J. S., Owen, N. V., Gibson, W. R. and Morton, D. M. (1978). Toxicologic evaluation of cefamandole nafate in laboratory animals.`. Infect. Dis., 137 (Suppl.), 51CrossRefGoogle Scholar
  94. 94.
    Capel-Edwards, K., Atkinson, R. M., Pratt, D. A. H. and Patterson, G. G. (1977). The toxicology of cefuroxime. Proc. R. Soc. Med., 70 (Suppl. 9), 11Google Scholar
  95. 95.
    Trollfors, B., Norrby, R. and Kristianson, K. (1977). Effect on renal function of treatment with cefoxitin alone or in combination with furosemide. In Current Chemotherapy, Proc. 10th International Congress of Chemotherapy, Vol. II, p. 760. ( New York: American Society for Microbiology )Google Scholar
  96. 96.
    Murdoch, J. (1964). Clinical trial of cephaloridine. Brit. Med. J., 2, 1238PubMedCrossRefGoogle Scholar
  97. 97.
    Stewart, G. T. and Holt, R. J. (1964). Laboratory and clinical results with cephaloridine. Lancet, 2, 1305PubMedCrossRefGoogle Scholar
  98. 98.
    Martin, W. J. and Wellmann, W. E. (1967). Clinically useful antimicrobial agents. Postgrad. Med. J. (Suppl.), 43, 142Google Scholar
  99. 99.
    Gralnick, H. R., McGinniss, M. and Halterman, R. (1972). Thrombocytopenia with sodium cephalothin therapy. Ann. Intern. Med., 77, 401PubMedGoogle Scholar
  100. 100.
    Wise, R., Stachan, C. J. L. and Powis, S. J. A. (1977). Cefazolin in biliary surgery. In Current Chemotherapy, Proc. 10th International Congress of Chemotherapy, Vol. II, p. 854. ( New York: American Society for Microbiology )Google Scholar
  101. 101.
    Brown, W. M. and Fallon, R. J. (1979). Cefotaxime for bacterial meningitis. Lancet, 1, 1246PubMedCrossRefGoogle Scholar

Copyright information

© MTP Press Limited 1980

Authors and Affiliations

  • Rosamund J. Williams
  • J. D. Williams

There are no affiliations available

Personalised recommendations