Skip to main content

Abstract

In a lightwave system the function of the optical receiver is to transform the input optical signal, which consists of a series of light pulses, back into the original electrical format, usually a binary stream of voltage pulses. In order to determine whether, in a specific time slot, the signal from the photodetector corresponds to a “1” or a “0”, the receiver must perform a series of functions including detection, amplification, equalization, filtering, and retiming [1–4]. Figure 14.1 shows a block diagram of the components in a typical lightwave receiver. First, the receiver must convert the light signal into current; this function is performed by the photodetector. The photocurrent must then be amplified to a usable level. The first stage of amplification is achieved with a low-noise transistor preamplifier, and the remainder of the amplification is provided by the postamplifier. Often the output of the amplifier stage is distorted and it is the function of the equalizer to remove the signal distortions, thus providing a reasonable pulse shape to the filter section. Finally, the filter maximizes the signal-to-noise ratio while introducing minimal distortion to the signal itself. The performance of the receiver is usually measured in terms of its sensitivity, that is, the minimum received optical power required to achieve a given bit error rate (BER). Typically, the sensitivity is quoted at 102212;9 BER in dBm (0 dBm = 10−3 W) of optical power. Better receiver sensitivities permit wider repeater spacings and greater loss margins, which ultimately result in lower systems costs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. G. Smith and S. D. Personick, “Receiver design for optical communications,” in Semiconductor Devices for Optical Communications, H. Kressel (Ed.), Springer-Verlag, New York, 1980.

    Google Scholar 

  2. T. V. Muoi, “Receiver design for high-speed optical-fiber systems,” J. Lightwave Technol., LT-2: 243–267 (1984).

    Google Scholar 

  3. D. R. Smith and I. Garrett, “A simplified approach to digital optical receiver design,” Opt. Quantum Electron., 10:211–221(1978).

    Google Scholar 

  4. K. Ogawa, “Considerations for optical receiver design,” IEEE J. Selected Areas. Commun., SAC-1: 524–532 (1983).

    Google Scholar 

  5. K. Ogawa, “Noise caused by GaAs MESFETs in optical receivers,” Bell Syst. Tech. J., 60:923–928(1981).

    Google Scholar 

  6. K. Ogawa, B. Owen, and H. J. Boll, “Long-wavelength optical receiver with a short-channel MOSFET,” Conf. Lasers and Electro-Optics, Washington, DC, 56–58 (1981).

    Google Scholar 

  7. K. Ogawa and J. C. Campbell, “Comparison of photodetector/low-noise amplifier combinations for long-wavelength receivers,” 3rd Int. Conf. Integrated Opt. Opt. Fiber Commun., San Francisco, CA, 1981.

    Google Scholar 

  8. D. R. Smith, R. C. Hooper, and I. Garrett, “Receivers for optical communications,” Opt. Quantum Electron. 10:293–300(1978).

    Google Scholar 

  9. R. G. Smith and S. R. Forrest, “Sensitivity of avalanche photodetector receivers for long-wavelength optical communications,” Bell Syst. Tech. J., 61:2929–2946(1982).

    Google Scholar 

  10. J. C. Campbell, “Photodetectors and compatible low-noise amplifiers for long-wavelength lightwave systems,” Fiber Integrated Opt., 5:1–21(1984).

    Google Scholar 

  11. J. L. Hullett and T. V. Muoi, “A feedback receiver amplifier for optical transmission systems,” IEEE Trans. Commun., COM-24: 1180–1185 (1976).

    Google Scholar 

  12. J. E. Goell, “Input amplifiers for optical PCM receivers,” Bell Syst. Tech. J., 53:1771–1793(1974).

    Google Scholar 

  13. M. J. N. Sibley, R. T. Unwin, and D. R. Smith, “The design of p-i-n bipolar transim-pedance pre-amplifiers for optical receivers,” J. Inst. Electron Radio Eng., 55:104–110(1985). February 1985.

    Google Scholar 

  14. D. R. Smith, R. C. Hooper, K. Ahmad, D. Jenkins, A. W. Mabbitt, and R. Nicklin, “p-i-n/ FET hybrid optical receiver for longer-wavelength optical communication systems,” Electron. Lett., 16:69–71(1980).

    Google Scholar 

  15. A. S. Tager, “Current fluctuations in semiconductors under the conditions of impact ion-ization and avalanche breakdown,” Fiz. Tver. Tela., 6:2418–2427(1964). [Sov. Phys. Solid State, 8: 1919-1925 (1965)].

    Google Scholar 

  16. G. Eisenstein and L. W. Stulz, “High quality antireflection coatings on laser facets by sputtered silicon nitride,” Appl. Opt., 23:161–164(1984).

    Google Scholar 

  17. T. P. Pearsall and R. W. Hopson, “Growth and characterization of lattice-matched epitaxial films of GaxIn 1-xAs/InP by liquid-phase epitaxy,” J. Electron. Mat., 7:133–146(1978).

    Google Scholar 

  18. K. J. Bachman and J. L. Shay, “An InGaAs detector for the 1.0–;1.7 μm wavelength range,” Appl. Phys. Lett., 32:446–448(1978).

    Google Scholar 

  19. H. Morkoc, T. J. Andrews, Y. M. Houng, R. Sankaran, S. G. Bandy, and G. A. Antypas, “Microwave InxGa1-x ASy P1-x /InP F.E.T,” Electron. Lett., 15:448–449(1978).

    Google Scholar 

  20. C. A. Burrus, A. G. Dentai, and T. P. Lee, “InGaAsP p-i-n photodiodes with low dark current and small capacitance.” Electron. Lett., 15:655–657(1979).

    Google Scholar 

  21. R. F. Leheny, R. E. Nahory, and M. A. Pollack, “In0 53Ga0 47As p-i-n photodiodes for long-wavelength fiber-optic systems,” Electron. Lett., 15:713–715(1979).

    Google Scholar 

  22. S. R. Forrest, R. F. Leheny, R. E. Nahory, and M. A. Pollack, “In0 53Ga0 47As photodiodes with dark current limited by generation-recombination and tunneling,” Appl. Phys. Lett., 37:322–324(1980).

    Google Scholar 

  23. F. Capasso, R. A. Logan, A. Hutchinson, and D. M. Manchon, “InGaAsP/InGaAs hetero-junction p-i-n detectors with low dark current and small capacitance for 1.3 μm–1.6 μm fiber systems,” Electron. Lett., 16: 893–895. (1980).

    Google Scholar 

  24. T. P. Lee, C. A. Burrus, A. G. Dentai, and K. Ogawa, “InGaAsP p-i-n photodiodes with low dark current and small capacitance,” Electron. Lett., 16:155–156(1980).

    Google Scholar 

  25. G. H. Olsen, “Low-leakage, high efficiency, reliable VPE InGaAs 1.0–1.7 μm photodiode,” IEEE Electron Dev. Lett., EDL-2: 217–219 (1981).

    Google Scholar 

  26. D. G. Jenkins and A. W. Mabbitt, “The reliability of GaInAs photodiodes and GaAs FETs for use in PIN-FET fibre optic receivers,” Proc. IEEE Specialists Conf. Light Emitting Diodes and Photodetectors, Ottawa-Hull, Canada, 152–153 (1982).

    Google Scholar 

  27. N. Susa, Y. Yamauchi, H. Ando, and H. Kanbe, “Planar type vapor-phase epitaxial In0.53Ga0.47As photodiode,” IEEE Electron. Dev. Lett, EDL-1: 55–57 (1980).

    Google Scholar 

  28. S. R. Forrest, I. Camlibel, O. K. Kim, S. J. Stocker, and J. R. Zuber, “Low dark-current, high efficiency planar In0 53Ga0 47As.InP pin photodiodes,” IEEE Electron. Dev. Lett., 20:283–285(1981).

    Google Scholar 

  29. V. Diadiuk, C. A. Armiento, S. H. Groves, and C. E. Hurwitz, “Surface passivation techniques for InP and InGaAsP p-n junction structures,” IEEE Electron. Dev. Lett., EDL-1: 177–178 (1980).

    Google Scholar 

  30. H. Nickel and E. Kuphal, “Surface-passivated low dark current InGaAs pin photodiodes,” J. Opt. Commun., 4 63–67 (1983).

    Google Scholar 

  31. S. R. Forrest, “Performance of InxGa1-x AsyP1-y photodiodes with dark current limited by diffusion, generation-recombination, and tunneling,” IEEE J. Quantum Electron., QE-17: 217–226 (1981).

    Google Scholar 

  32. W. Shockley, “The theory of p-n junctions in semiconductors and p-n junction transistors,” Bell Syst. Tech. J., 28:435–489(1949).

    Google Scholar 

  33. S. M. Sze, Physics of Semiconductor Devices, Wiley, New York, 1969.

    Google Scholar 

  34. J. L. Moll, Physics of Semiconductors, McGraw-Hill, New York, 1964.

    Google Scholar 

  35. A. S. Grove, Physics and Technology of Semiconductor Devices, Wiley, New York, 1967.

    Google Scholar 

  36. S. R. Forrest, M. DiDomenico, R. G. Smith, and H. J. Stocker, “Evidence for tunneling in reverse-bias III–V photodetector diodes,” Appl. Phys. Lett., 36:580–582(1980).

    Google Scholar 

  37. H. Ando, H. Kanbe, M. Ito, and T. Kaneda, “Tunneling current in InGaAs and optimum design for InGaAs/InP avalanche photodiodes,” Jap. J. Appl. Phys., 19: L277–L280 (1980).

    Google Scholar 

  38. Y. Takanashi, M. Kawashima, and Y. Horikoshi, “Required donor concentration of epitaxial layers for efficient InGaAsP avalanche photodiodes,” Jap. J. Appl. Phys., 19:693–700(1980).

    Google Scholar 

  39. R. Trommer and H. Albrecht, “Confirmation of tunneling current via traps by DLTS measurements in InGaAs photodiodes,” Jap. J. Appl. Phys., 22: L364–L366 (1983).

    Google Scholar 

  40. O. K. Kim, B. V. Dutt, R. J. McCoy, and J. R. Zuber, “A low dark-current, planar InGaAs p-i-n photodiode with a quaternary InGaAsP Ca layer,” IEEE J. Quantum Electron., QE-21: 138–143 (1985).

    Google Scholar 

  41. J. C. Campbell, A. G. Dentai, G. J. Qua, J. Long, and V. G. Riggs, “Planar InGaAs PIN photodiode with a semi-insulating InP cap layer,” Electron. Lett., 21:447–448(1985).

    Google Scholar 

  42. S. Kagawa, J. Komeno, M. Ozeki, and T. Kaneda, “Planar Ga0 47In0 53As PIN photo-diodes with extremely low dark current,” Proc. Conf. Optical Fiber Commun., San Diego, CA, 1985, p. 92.

    Google Scholar 

  43. T. P. Lee and Tingye Li, “Photodetectors,” in Optical Fiber Communications, S. E. Miller and A. G. Chynoweth (Eds.), Academic, Orlando, FL, 1979.

    Google Scholar 

  44. H. W. Ruegg, “An optimized avalanche photodiode,” IEEE Trans. Electron. Dev., ED-14: 239–251 (1967).

    Google Scholar 

  45. J. E. Bowers, C. A. Burrus, and R. S. Tucker, “22-GHz bandwidth InGaAs/InP PIN photodiodes,” Picosecond Electron. Opt. Conf., Incline Village, NV, 1985.

    Google Scholar 

  46. T. H. Windhorn, L. W. Cook, and G. E. Stillman, “Temperature dependent electron velocity-field characteristics for In0 53Ga0 47As at high electric fields,” J. Electron. Mat., 11:1065–1082(1982).

    Google Scholar 

  47. K. Brennan and K. Hess, “Theory of high field transport of holes in GaAs and InP,” Phys. Rev. B, 29: 5581–5590 (1984).

    Google Scholar 

  48. C. A. Burrus, J. E. Bowers, and R. S. Tucker, “Improved very-high-speed InGaAs PIN punch-through photodiode,” Electron. Lett., 21:262–263(1985).

    Google Scholar 

  49. J. C. Campbell and K. Ogawa, “Heterojunction phototransistors for long-wavelength optical receivers,” J. Appl. Phys., 53:1203–1208(1982).

    Google Scholar 

  50. M. C. Brain and D. R. Smith “Phototransistors in digital optical communication systems,” IEEE J. Quantum Electron., QE-19: 1139–1148 (1983).

    Google Scholar 

  51. R. M. Kolbas, J. Abrokwah, J. K. Carney, D. H. Bradshaw, B. R. Elmer, and J. R. Baird, “Planar monolithic integration of a photodiode and a GaAs preamplifier,” Appl. Phys. Lett., 43:821–823(1983).

    Google Scholar 

  52. O. Wada, H. Hamaguchi, S. Miura, M. Makiuchi, K. Nakai, H. Horimatsu, and T. Sakurai, “AlGaAs/GaAs p-i-n photodiode/preamplifier monolithic photoreceiver integrated on semi-insulating GaAs substrate,” Appl. Phys. Lett., 46:981–983(1985).

    Google Scholar 

  53. R. F. Leheny, R. E. Nahory, M. A. Pollack, A. A. Ballman, E. D. Beebe, J. C. De Winter, and R. J. Martin, “Integrated InGaAs PIN-FET photoreceiver,” Electron. Lett., 16:353–355(1980).

    Google Scholar 

  54. R. L. Leheny, R. E. Nahory, J. C. Dewinter, R. J. Martin, and E. D. Beebe, “An integrated PIN/JFET photoreceiver for long wavelength optical systems,” Tech. Digest, Int. Electron. Dev. Mtg., Washington, D.C., 1981, pp. 276–279.

    Google Scholar 

  55. S. Hata, M. Ikeda, T. Amano, G. Motosugi, and K. Kurumada, “Planar InGaAs/InP PINFET fabricated by Be ion implantation,” Electron Lett., 20:947–948(1984).

    Google Scholar 

  56. C. L. Cheng, A. S. H. Liao, T. Y. Chang, R. F. Leheny, L. A. Coldren, and B. Lalevic, “Submicrometer self-aligned recessed gate InGaAs MISFET exhibiting very high transconductance,” IEEE Electron Dev. Lett., EDL-5: 169–171 (1984).

    Google Scholar 

  57. C. L. Cheng, A. S. H. Liao, T. Y. Chang, E. A. Caridi, L. A. Coldren, and B. Lalevic, “Silicon oxide enhanced Schottky gate In0 53Ga0 47As FET’s with a self-aligned recessed gate structure,” IEEE Electron. Dev. Lett., EDL-5: 511–514 (1984).

    Google Scholar 

  58. K. Kasahara, J. Hayashi, K. Makita, K. Taguchi, A. Susuki, H. Homura, and S. Matushita, “Monolithically integrated In0 53Ga0 47As-PIN/InP-MISFET photoreceiver,” Electron Lett., 20:314–315(1984).

    Google Scholar 

  59. B. Tell, A. S. H. Liao, K. Brown-Goebler, T. J. Bridges, E. G. Burkhardt, T. Y. Chang, and N. S. Bergano, “Monolithic integration of a planar embedded InGaAs PIN detector with InP depletion mode FETs,” IEEE Trans. Electron. Dev., ED-32: 2319–2321 (1985).

    Google Scholar 

  60. Zh. I. Alferov, F. A. Akhmedov, V. I. Korolkov, and V. G. Nitkitin, “Phototransistor utilizing a GaAs-AlAs heterojunction,” Sov. Phys. Semicond., 7:780–782(1973).

    Google Scholar 

  61. H. Beneking, P. Mischel, and G. Schul, “High-gain wide-gap-emitter Ga1-x Alx As-GaAs phototransistor,” Electron. Lett., 12:395–396(1976).

    Google Scholar 

  62. M. Konagai, K. Katsukawa, and K. Takahashi, “(GaAl)As/GaAs heteroj unction photo-transistors with high current gain,” J. Appl. Phys., 48:4389–4394(1977).

    Google Scholar 

  63. R. A. Milano, T. H. Windhorn, E. R. Anderson, G. E. Stillman, R. D. Dupuis, and P. D. Dapkus, “Al0 5Ga0 5As-GaAs heterojunction phototransistors grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett., 34:562–564(1979).

    Google Scholar 

  64. K. Tabatabai-Alavi, R. J. Markunus, and C. G. Fonstad, “LPE-grown InGaAsP/InP heterojunction bipolar phototransistor,” Tech. Digest, Int. Electron. Dev. Mtg., Washington, D.C., 1979, pp. 643–645.

    Google Scholar 

  65. M. Tobe, Y. Amemiya, S. Sakai, and M. Umeno, “High-sensitivity InGaAsP/InP phototransistors,” Appl. Phys. Lett., 37:73–75(1980).

    Google Scholar 

  66. P. D. Wright, R. J. Nelson, and T. Cella, “High-gain InGaAsP-InP heterojunction phototransistors,” Appl. Phys. Lett., 37:192–194(1980).

    Google Scholar 

  67. D. Fritzsche, E. Kuphal, and R. Aulbach, “Fast response InP/InGaAsP heterojunction phototransistors,” Electron. Lett., 17:178–180(1981).

    Google Scholar 

  68. J. C. Campbell, A. G. Dentai, C. A. Burrus, and J. F. Ferguson, “InP/InGaAs heterojunction phototransistors,” IEEE J. Quantum Electron., QE-17: 264–269 (1981).

    Google Scholar 

  69. J. C. Campbell, C. A. Burrus, A. G. Dentai, and K. Ogawa, “Small-area high-speed InP/ InGaAs phototransistor,” Appl. Phys. Lett., 39:820–821(1981).

    Google Scholar 

  70. H. Kroemer, “Theory of a wide-gap emitter for transistors,” Proc. IRE, 45:1535–1537(1957).

    Google Scholar 

  71. L. E. Tsyrlin, “Response of a phototransistor,” Sov. Phys. Semicond., 11:1127–1129(1977).

    Google Scholar 

  72. R. A. Milano, P. D. Dapkus, and G. E. Stillman, “An analysis of the performance of heterojunction phototransistors for fiber optic communications,” IEEE Trans. Electron. Dev., ED-29: 266–274 (1981).

    Google Scholar 

  73. J. C. Campbell and A. G. Dentai, “InP/InGaAs heterojunction phototransistor with integrated light emitting diode,” Appl. Phys. Lett., 41:192–193(1983).

    Google Scholar 

  74. J. C. Campbell, T. P. Lee, A. G. Dentai, and C. A. Burrus, “Dual-wavelength demultiplexing InGaAsP photodiode,” Appl. Phys. Lett., 34:401–402(1979).

    Google Scholar 

  75. J. C. Campbell, A. G. Dentai, T. P. Lee, and C. A. Burrus, “Improved two-wavelength demultiplexing InGaAsP photodetector,” IEEE J. Quantum Electron., QE-16: 601–602 (1980).

    Google Scholar 

  76. S. Sakai, M. Umeno, and Y. Amemiya, “Optimum designing of InGaAsP/InP wavelength demultiplexing photodiodes,” Trans. IECE Jap., E 63:192–197(1980).

    Google Scholar 

  77. S. Sakai and M. Umeno, “Wavelength demultiplexing photodiode with very high isolation ratio,” Jap. J. Appl. Phys., 22: L338–L339 (1983).

    Google Scholar 

  78. K. Ogawa, T. P. Lee, C. A. Burrus, J. C. Campbell, and A. G. Dentai, “Wavelength division multiplexing experiment employing dual-wavelength LEDs and photodetectors,” Electron. Lett., 17:857–859(1981).

    Google Scholar 

  79. J. C. Campbell, C. A. Burrus, J. A. Copeland, and A. G. Dentai, “Wavelength-discriminating photodetector for lightwave systems,” Electron. Lett., 19:672–674(1983).

    Google Scholar 

  80. T. H. Wood, C. A. Burrus, A. H. Gnauck, J. M. Wiesenfeld, D. A. B. Miller, and D. S. Chemla, “Wavelength-selective voltage-tunable photodetector made from multiple quantum wells,” Appl. Phys. Lett., 47:190–192(1985).

    Google Scholar 

  81. H. Melchior, A. R. Hartman, D. P. Schinke, and T. E. Seidel, “Planar epitaxial silicon avalanche photodiode,” Bell Syst. Tech. J., 57:1791–1807(1978).

    Google Scholar 

  82. F. Capasso, M. V. Panish, and S. Sumski, “The liquid-phase epitaxial growth of low net donor concentration (5 × 1014-5 × 1015/cm3) GaSb for detector applications in the 1.3–1.6 μm region,” IEEE J. Quantum Electron., QE-17: 273–274 (1981).

    Google Scholar 

  83. H. D. Law, R. Chin, K. Nakano, and R. A. Milano, “The GaAlAsSb quaternary and GaAlSb ternary alloys and their application to infrared detectors,” IEEE J. Quantum Electron., QE-17: 275–823 (1981).

    Google Scholar 

  84. N. Tabatabaie, G. E. Stillman, R. Chin, and P. D. Dapkus, “Tunneling in the reverse dark current of GaAlAsSb avalanche photodiodes,” Appl. Phys. Lett., 40:415–416(1982).

    Google Scholar 

  85. K. Nishida, K. Taguchi, and Y. Matsumoto, “InGaAsP heterojunction avalanche photodiodes with high avalanche gain,” Appl. Phys. Lett., 35:251–252(1979).

    Google Scholar 

  86. S. R. Forrest, R. G. Smith, and O. K. Kim, “Performance of In0 53Ga0 47As/InP avalanche photodiodes,” IEEE J. Quantum Electron., QE-18: 2040–2048 (1982).

    Google Scholar 

  87. N. Susa, H. Nakagome, O. Mikami, H. Ando, and H. Kanbe, “New InGaAs/InP avalanche photodiode structure for the 1–1.6 μm wavelength region,” IEEE J. Quantum Electron., QE-16: 8064–869 (1980).

    Google Scholar 

  88. N. Susa, H. Nakagome, H. Ando, and H. Kanbe, “Characteristics in InGaAs/InP avalanche photodiodes with separated absorption and multiplication regions,” IEEE J. Quantum Electron, QE-17: 243–250 (1981).

    Google Scholar 

  89. V. Diadiuk, S. H. Groves, C. E. Hurwitz, and G. W. Iseler, “Low dark-current, high gain GalnAsP/InP avalanche photodetectors,” IEEE J. Quantum Electron., QE-17: 260–263 (1981).

    Google Scholar 

  90. O. K. Kim, S. R. Forrest, W. A. Bonner, and R. G. Smith, “A high gain In0.53Ga0.47As/ InP avalanche photodiode with no tunneling leakage current,” Appl. Phys. Lett., 39:402–404(1981).

    Google Scholar 

  91. T. Shirai, T. Mikawa, T. Kaneda, and A. Miyauchi, “InGaAs avalanche photodiodes for 1μm wavelength region,” Electron. Lett., 19:535–536(1983).

    Google Scholar 

  92. S. R. Forrest, O. K. Kim, and R. G. Smith, “Optical response time of In0 53Ga0.47As/InP avalanche photodiodes,” Appl. Phys. Lett., 41:95–98(1982).

    Google Scholar 

  93. F. Capasso, B. Kasper, K. Alavi, A. Y. Cho, and J. M. Parsey, “New low dark current, high speed Al0 48In0 52As/In0 53Ga0 47As avalanche photodiode by molecular beam epitaxy for long wavelength fiber optic communication systems,” Appl. Phys. Lett., 44:1027–1029(1984).

    Google Scholar 

  94. F. Capasso, K. Mohammed, K. Alavi, A. Y. Cho, and P. W. Foy, “Impact ionization rates for electrons and holes in Al0.48In0.52As,” Appl. Phys. Lett., 45:968–970(1984).

    Google Scholar 

  95. F. Capasso, H. M. Cox, A. L. Hutchinson, N. A. Olsson, and S. G. Hummel, “Pseudoquaternary GalnAsP semiconductors: a new In0 53Ga0 47As/InP graded gap superlattice and its applications to avalanche photodiodes,” Appl. Phys. Lett., 45:1193–1195(1984).

    Google Scholar 

  96. Y. Matsushima, A. Akiba, K. Sakai, Y. Kushiro, Y. Noda, and K. Utaka, “High-speed-response In0 53Ga0.47As/InP heterostructure avalanche photodiode with InGaAsP buffer layers,” Electron. Lett., 18:945–946(1982).

    Google Scholar 

  97. J. C. Campbell, A. G. Dentai, W. S. Holden, and B. L. Kasper, “High-performance avalanche photodiode with separate absorption, grading, and multiplication regions,” Electron. Lett., 19:818–820(1983).

    Google Scholar 

  98. K. Yasuda, T. Mikawa, Y. Kishi, and T. Kaneda, “Multiplication-dependent frequency responses of InP/InGaAs avalanche photodiodes,” Electron. Lett., 20:373–374(1984).

    Google Scholar 

  99. Y. Sugimoto, T. Torikai, K. Makita, H. Ishihara, K. Minemura, and K. Taguchi, “Highspeed planar-structure InP/InGaAsP/InGaAs avalanche photodiode grown by VPE,” Electron. Lett., 20:653–654(1984).

    Google Scholar 

  100. R. Trommer, Proc. 9th Eurp. Conf.Opt. Commun., 1983, pp. 159–162.

    Google Scholar 

  101. H. Ando, Y. Yamauchi, and N. Susa, “High-speed planar InP/InGaAs avalanche photodiode fabricated by vapor phase epitaxy,” Electron. Lett., 19:543–544(1983).

    Google Scholar 

  102. Y. Matsushima, Y. Noda, Y. Kushiro, N. Seki, and S. Akiba, “High sensitivity of VPE-grown InGaAs/InP-heterostructure APD with buffer layer and guard-ring structure,” Electron. Lett., 20:235–236(1984).

    Google Scholar 

  103. Y. Yasuda, Y. Kishi, T. Shirai, T. Mikawa, S. Yamazaki, and T. Kaneda, “InP/InGaAs buried-structure avalanche photodiodes,” Electron. Lett., 20:158–159(1984).

    Google Scholar 

  104. H. Ando, Y. Yamauchi, and N. Susa, “Reach-through type planar InGaAs/InP avalanche photodiode fabricated by continuous vapor phase epitaxy,” IEEE J. Quantum Electron., QE-20: 256–264 (1984).

    Google Scholar 

  105. M. Kobayashi, S. Yamazaki, and T. Kaneda, “Planar InP/GalnAsP/GalnAs buried-structure avalanche photodiode,” Appl. Phys. Lett., 45:759–761(1984).

    Google Scholar 

  106. J. C. Campbell, W. T. Tsang, G. J. Qua, B. C. Johnson, and J. E. Bowers, “Wide-bandwidth InP/InGaAsP/InGaAs avalanche photodiodes grown by chemical beam epitaxy,” Tech. Digest Int. Electron Dev. Mtg., Washington, D.C., 1987, pp. 233–236.

    Google Scholar 

  107. E. B. Emmons, “Avalanche-photodiode frequency response,” J. Appl. Phys., 38:3705–3714(1967).

    Google Scholar 

  108. J. C. Campbell, W. T. Tsang, G. J. Qua, and J. E. Bowers, “InP/InGaAsP/InGaAs avalanche photodiodes with 70 GHz gain-bandwidth product,” Appl. Phys. Lett., 51:1454–1454(1987).

    Google Scholar 

  109. F. Capasso, P. M. Petroff, W. B. Bonner, and S. Sumski, “Investigation of microplasmas in InP avalanche photodiodes,” IEEE Electron Dev. Lett., EDL-1: 27–29 (1980).

    Google Scholar 

  110. N. Magnea, P. M. Petroff, F. Capasso, R. A. Logan, and P. W. Foy, “Microplasma characteristics on LPE grown InP-In0 53Ga0 47As long wavelength avalanche photodiodes with separated multiplication and absorption regions,” Appl. Phys., 23:66–68(1984).

    Google Scholar 

  111. T. Takanohashi, T. Shirai, S. Yamazaki, and S. Komiya, “Inhomogeneous distribution of avalanche multiplication in InP APDs,” Jap. J. Appl. Phys., 23:207–271(1984).

    Google Scholar 

  112. W. S. Holden, J. C. Campbell, and A. G. Dentai, “Gain uniformity of InP/InGaAsP/ InGaAs avalanche photodiodes with separate absorption, grading, and multiplication regions,” IEEE J. Quantum Electron., QE-21: 1310–1313 (1985).

    Google Scholar 

  113. R. J. McIntyre, “Multiplication noise in uniform avalanche diodes,” IEEE Trans. Electron Dev., ED-13: 164–168 (1966).

    Google Scholar 

  114. R.J. Mclntyre, “The distribution of gains in uniformly multiplying avalanche photodiodes: theory,” IEEE Trans. Electron. Dev., ED-19: 703–713 (1972).

    Google Scholar 

  115. M. Ito, T. Kaneda, K. Nakajima, Y. Toyoma, and T. Kotani, “Impact ionization ratio in In0.73Ga0.27As0.57P0.43,” Electron. Lett., 14:418–419(1978).

    Google Scholar 

  116. S. R. Forrest, G. F. Williams, O. K. Kim, and R. G. Smith, “Excess-noise and receiver sensitivity measurement of In0 53Ga0 47As/InP avalanche photodiodes,” Electron. Lett., 17:917–919(1981).

    Google Scholar 

  117. R. Yeats and K. Von Dessonneck, “Detailed performance characteristics of hybrid InP-InGaAsP APDs,” 3rd Int. Conf. Integrated Opt. Opt. Fiber Commun., San Francisco, CA, p. 104.

    Google Scholar 

  118. T. Shirai, S. Yamazaki, F. Osaka, K. Nakajima, and T. Kaneda, “Multiplication noise in planar InP/InGaAsP heterostructure avalanche photodiodes,” Appl. Phys. Lett., 40:532–533(1982).

    Google Scholar 

  119. B. L. Kasper, J. C. Campbell, and A. G. Dentai, “Measurements of the statistics of excess noise in separate absorption, grading and multiplication (SAGM) avalanche photodiodes,” Electron. Lett., 20:796–797(1984).

    Google Scholar 

  120. Y. K. Jhee, J. C. Campbell, W. S. Holden, A. G. Dentai, and J. K. Plourde, “The effect of nonuniform gain on the multiplication noise of InP/InGaAsP/InGaAs avalanche photodiodes,” IEEE J. Quantum Electron., QE-21: 1858–1861 (1985).

    Google Scholar 

  121. H. Melchior and W. T. Lynch, “Signal and noise response of high speed germanium avalanche photodiodes,” IEEE Trans. Electron. Dev., ED-13: 829–838 (1966).

    Google Scholar 

  122. H. Ando, H. Kanbe, T. Kimura, Y. Yamaoka, and T. Kaneda, “Characteristics of germanium avalanche photodiodes in the wavelength region of 1–;1.6 μm.” IEEE J. Quantum Electron., QE-14: 804–809 (1978).

    Google Scholar 

  123. T. Torikai, I. Hino, H. IwaSaki, and K. Nishida, “Encapsulated thermal oxidation for Ge-APDs passivation,” Jap. J. Appl. Phys., 21:1776–1778(1982).

    Google Scholar 

  124. S. Kagawa, T. Mikawa, and T. Kaneda, “Germanium avalanche photodiodes in the 1.3 μm wavelength region,” Fujitsu Sci. Tech. J., 18:397–418(1982).

    Google Scholar 

  125. T. Kaneda, S. Kagawa, T. Mikawa, T. Toyama, and H. Ando, “An n + -n-p germanium avalanche photodiode,” Appl. Phys. Lett., 36:572–274(1980).

    Google Scholar 

  126. T. Mikawa, S. Kagawa, T. Kaneda, T. Sakurai, H. Ando, and O. Mikami, “A low-noise n + -n-p germanium avalanche photodiode,” IEEE J. Quantum Electron., QE-17: 210–216 (1981).

    Google Scholar 

  127. T. Kaneda, H. Fukuda, T. Mikawa, T. Banba, Y. Toyama, and H. Ando, “Shallow-junction p + -n germanium avalanche photodiodes (APDs),” Appl. Phys. Lett., 34:866–868(1979).

    Google Scholar 

  128. S. Kagawa, T. Kaneda, T. Mikawa, Y. Banba, Y. Toyama, and O. Mikami, “Fully ion-implanted p + -n germanium avalanche photodiodes,” Appl. Phys. Lett., 38:429–431(1981).

    Google Scholar 

  129. J. Yamada, A. Kawana, T. Miya, H. Nagai, and T. Kimura, “Giga-bit/s optical receiver sensitivity and zero-dispersion single-mode fiber transmission at 1.55 μm,” IEEE J. Quantum Electron., QE-18: 1537–1546 (1982).

    Google Scholar 

  130. T. Mikawa, S. Kagawa, and T. Kaneda, “Germanium reachthrough avalanche photodiodes for optical communication systems in the 1.55 μm wavelength region,” IEEE Trans. Electron Dev., ED-31: 971–977 (1984).

    Google Scholar 

  131. M. Niwa, Y. Tashiro, K. Minemura, and H. Iwasaki, “High-sensitivity hi-lo germanium avalanche photodiode for 1.5 μm-wavelength optical communication,” Electron Lett., 20:552–553(1984).

    Google Scholar 

  132. R. Chin, N. Holonyak, G. E. Stillman, J. Y. Tang, and K. Hess, “Impact ionization in multilayered heterojunction structures,” Electron. Lett., 16:467–469(1980).

    Google Scholar 

  133. F. Capasso, W. T. Tsang, A. L. Hutchinson, and G. F. Williams, “Enhancement of electron impact ionization in a superlattice: a new avalanche photodiode with a large ionization rates ratio,” Appl. Phys. Lett., 40:38–40(1982).

    Google Scholar 

  134. G. F. Williams, F. Capasso, and W. T. Tsang, “The graded bandgap multilayer avalanche photodiode: a new low noise detector,” IEEE Electron Dev. Lett., EDL-3: 71–73 (1982).

    Google Scholar 

  135. F. Capasso, W. T. Tsang, and G. F. Williams, “Staircase solid state photomultipliers and avalanche photodiodes with enhanced ionization rate ratio,” IEEE Trans. Electron Dev., ED-30: 381–390 (1983).

    Google Scholar 

  136. D. R. Smith, R. C. Hooper, P. P. Smyth, and D. Wake, “Experimental comparison of a germanium avalanche photodiode and InGaAs PINFE receiver for longer wavelength optical communication systems,” Electron. Lett., 18:453–454(1982).

    Google Scholar 

  137. M. C. Brain, P. P. Smyth, D. R. Smith, B. R. White, and P. J. Chidgey, “PINFET hybrid optical receivers for 1.2-Gbit/s transmission systems at 1.3-and 1.55-μm wavelength,” Electron. Lett., 20:894–895(1984).

    Google Scholar 

  138. B. L. Kasper, J. C. Campbell, A. H. Gnauck, A. G. Dentai, and J. R. Talman, “SAGM avalanche photodiode receiver for 2 and 4 Gbit/s,” Electron. Lett., 21:982–984(1985).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Van Nostrand Reinhold

About this chapter

Cite this chapter

Campbell, J.C. (1989). Photodetectors for Long-Wavelength Lightwave Systems. In: Lin, C. (eds) Optoelectronic Technology and Lightwave Communications Systems. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-7035-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-7035-2_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-7037-6

  • Online ISBN: 978-94-011-7035-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics