Skip to main content
  • 307 Accesses

Abstract

The most interesting feature of light emitted from lasers is its coherence. Research on laser diodes (LDs) has been aimed at improving the quality of the light as well as improving electrical properties, for instance, reducing the threshold current.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Tsukada, “GaAs-Ga1-xAlxAs buried heterostructure injection lasers,” J. Appl. Phys., 45:4899–4906(1974).

    Article  Google Scholar 

  2. K. Aiki, M. Nakamura, T. Kuroda, J. Umeda, R. Ito, N. Chinone, and M. Maeda, “Transverse mode stabilized AlxGa1-xAs injection lasers with channel-substrate-planar structure”, IEEE J. Quantum Electron., QE-14: 89–94 (1978).

    Article  Google Scholar 

  3. T. Ikegami, “Reflectivity of mode at facet and oscillation mode in double heterostructure injection lasers,” IEEE J. Quantum Electron., QE-8: 470–476 (1972).

    Article  Google Scholar 

  4. T. L. Paoli and J. E. Ripper, “Direct modulation of semiconductor lasers,” Proc. IEEE, 58:1457–1965(1970).

    Article  Google Scholar 

  5. R. E. Epworth, “The phenomenon of modal noise in analogue and digital optical fiber systems,” Tech. Digest, 4th Eur. Conf. Opt. Commun., 1978, p. 492.

    Google Scholar 

  6. T. Ito, S. Machida, K. Nawata, and T. Ikegami, “Intensity fluctuations in each longitudinal mode of a multimode AlGaAs laser,” IEEE J. Quantum Electron., QE-13: 574–579 (1977).

    Article  Google Scholar 

  7. Y. Okano, K. Nakagawa, and T. Ito, “Laser mode partition noise evaluation for optical fiber transmission,” IEEE Trans. Commu., COM-28: 238–243 (1980).

    Article  Google Scholar 

  8. K. Ogawa, “Analysis of mode partition noise in laser transmission system,” IEEE J. Quantum Electron., QE-18: 849–855 (1982).

    Article  Google Scholar 

  9. R. A. Linke, B. L. Kasper, J.-S. Ko, I. P. Kaminow, and R. S. Vodhanel, “1 Gbit/s transmission experiment over 101 km of single mode fiber using a 1.55 μm ridge guide C3 laser,” Electron. Lett., 19:776–777(1983).

    Article  Google Scholar 

  10. K. Iwashita, T. Matsumoto, C. Tanaka, and G. Motosugi, “Linewidth requirement evaluation and 290 km transmission experiment for optical CPFSK differential detection,” Electron. Lett., 22:791–792(1986).

    Article  Google Scholar 

  11. L. W. Casperson, “Threshold characteristics of multimode laser oscillators,” J. Appl. Phys., 46:5194–5201(1975).

    Article  Google Scholar 

  12. N. Chinose, T. Kuroda, T. Ohtoshi, T. Takahashi, and T. Kajimura, “Mode-hopping noise in index-guided laser,” IEEE J. Quantum Electron., QE-21: 1264–1270 (1985).

    Article  Google Scholar 

  13. T. Ikegami, “Spectrum broadening and tailing effect in direct modulated injection lasers,” Proc. 1st Eur. Conf. Opt. Commun., London, 1975, pp. 111–112.

    Google Scholar 

  14. T. E. Bell, “Single-frequency semiconductor lasers,” IEEE Spectrum, 20(12): 43 (1983).

    Google Scholar 

  15. H. Kogelnik and C. V. Shank, “Stimulated emission in a periodic structure,” Appl. Phys. Lett., 18:152–154(1971).

    Article  Google Scholar 

  16. I. P. Kaminow and H. P. Weber, “Poly(methyl methacrylate) dye laser with internal diffraction grating resonator,” Appl. Phys. Lett., 18:497–499(1971).

    Article  Google Scholar 

  17. W. T. Tsang, N. A. Olsson, R. A. Linke, and R. A. Logan, “1.5 μm wavelength GalnAsP C3 lasers—single-frequency operation and wide band frequency tuning,” Electron. Lett., 19:415–416(1983).

    Article  Google Scholar 

  18. K. Utaka, S. Akiba, K. Sakai, and M. Matsushima, “Room-temperature CW operation of distributed-feedback buried-heterostructure InGaAsP/InP lasers emitting at 1.57 μm,” Electron. Lett., 17:961–963(1981).

    Article  Google Scholar 

  19. T. Matsuoka, H. Nagai, Y. Itaya, Y. Noguchi, U. Suzuki, and T. Ikegami, “CW operation of DFB-BH GalnAsP/InP lasers in 1.5 μm wavelength region,” Electron. Lett., 18:27–28(1982).

    Article  Google Scholar 

  20. W. T. Tsang, Semiconductors and Semimetals, Vol. 22, Part B, Academic, New York, 1985.

    Google Scholar 

  21. W. Streifer, D. Yevick, T. Paoli, and R. Burnham, “An analysis of cleaved coupled cavity lasers,” IEEE J. Quantum Electron., QE-20: 754–764 (1984).

    Article  Google Scholar 

  22. S. W. Corzine and L. A. Coldren, “Continuous tunability in three-terminal coupled-cavity lasers,” Appl. Phys. Lett., 48:1190–1192(1986).

    Article  Google Scholar 

  23. M. Nakamura, K. Aiki, J. Umeda, and A. Yariv, “CW operation of distributed feedback GaAs-GaAlAs diode lasers at temperatures up to 300 K,” Appl. Phys. Lett., 27:403–405(1975).

    Article  Google Scholar 

  24. F. Koyama, S. Arai, Y. Suematsu, and K. Kishino, “Dynamic spectral width of rapidly modulated 1.58 μm GaInAsP/InP buried-heterostructure distributed Bragg reflector integrated twin guide lasers,” Electron. Lett., 17:938–939(1981).

    Article  Google Scholar 

  25. H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys., 43:2327–2335(1972).

    Article  Google Scholar 

  26. A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron., QE-9: 919–933 (1973).

    Article  Google Scholar 

  27. S. Wang, “Principles of distributed feedback and distributed Bragg-reflector lasers,” IEEE J. Quantum Electron., QE-10: 413–427 (1974).

    Article  Google Scholar 

  28. W. Streifer, R. D. Burnham, and D. R. Scifres, “Effect of external reflectors on longitudinal modes of distributed feedback lasers,” IEEE J. Quantum Electron., QE-11: 154–161 (1975).

    Article  Google Scholar 

  29. T. Matsuoka, Y. Yoshikuni, and H. Nagai, “Verification of the light phase effect at the facet on DFB laser properties,” IEEE J. Quantum Electron., QE-21: 1880–1886 (1985).

    Article  Google Scholar 

  30. H. A. Haus and C. V. Shank, “Antisymmetric taper of distributed feedback lasers,” IEEE J. Quantum Electron., QE-12: 532–539 (1976).

    Article  Google Scholar 

  31. K. Utaka, S. Akiba, K. Sakai, and Y. Matsushima, “λ/4-shifted InGaAsP/InP DFB lasers by simultaneous holographic exposure of positive and negative photoresists,” Electron. Lett., 20:1008–1010(1984).

    Article  Google Scholar 

  32. B. Broberg, S. Koentjoro, F. Koyama, Y. Tohmori, and Y. Suematsu, “Mass transported 1.53 μm DFB lasers with improved longitudinal mode control,” Proc. 10th Eur. Conf. Opt. Commun., Stuttgart, 1984, Postdeadline Paper no. 2.

    Google Scholar 

  33. H. Nagai, T. Matsuoka, Y. Noguchi, Y. Suzuki, and Y. Yoshikuni, “InGaAsP/InP distributed feedback buried-heterostructure lasers with both facets cleaved structure,” IEEE J. Quantum Electron., QE-22: 450–457 (1986).

    Article  Google Scholar 

  34. W. Streifer, D. R. Scifers, and R. D. Burnham, “Coupling coefficients for distributed feedback single-and double-heterostructure diode lasers,” IEEE J. Quantum Electron., QE-11: 867–873 (1975).

    Article  Google Scholar 

  35. W. Streifer, R. D. Burnham, and D. R. Scifres, “Radiation losses in distributed feedback lasers and longitudinal mode,” IEEE J. Quantum Electron., QE-12: 737–739 (1976).

    Article  Google Scholar 

  36. C. H. Henry, R. F. Kazarinov, R. A. Logan, and R. Yen, “Observation of destructive interference in the radiation loss of second-order DFB lasers,” IEEE J. Quantum Electron., QE-21: 151–154 (1985).

    Article  Google Scholar 

  37. Y. Itaya, T. Matsuoka, K. Kuroiwa, and T. Ikegami, “Longitudinal mode behaviors of 1.5 μm range GalnAsP/InP distributed feedback lasers,” IEEE J. Quantum Electron., QE-20: 230–235 (1984).

    Article  Google Scholar 

  38. J. Buus, “Mode selectivity in DFB lasers with cleaved facets,” Electron. Lett., 21:179–180(1985).

    Article  Google Scholar 

  39. M. Usami, S. Akiba, and K. Utaka, Proc. Int. Semiconductor Laser Conf., Kanazawa, Japan, 1986, paper E-3.

    Google Scholar 

  40. M. Yamaguchi, Y. Koizumi, T. Numai, I. Mito, and K. Kobayashi, “High single longitudinal mode yield in 1.55 μm phase shifted DFB-DC-PBH LDs with a novel cavity end structure,” Proc. 13th Eur. Conf. Opt. Commun. Helsinki, 1987, pp. 51–54.

    Google Scholar 

  41. H. Soda, H. Ishikawa, and H. Imai, “Design of DFB lasers for high-power single-mode operation,” Electron. Lett., 22:1047–1049(1986).

    Article  Google Scholar 

  42. C. Lin, T. P. Lee, and C. A. Burrus, “Picosecond frequency chirping and dynamic line broadening in InGaAsP injection lasers under fast excitation,” Appl. Phys. Lett., 42:141–143(1983).

    Article  Google Scholar 

  43. F. Koyama, S. Arai, Y. Suematsu, and K. Kishino, “Dynamic spectral width of rapidly modulated 1.58 μm GalnAsP/InP buried-heterostructure distributed Bragg reflector integrated twin guide lasers,” Electron. Lett., 17:938–940(1981).

    Article  Google Scholar 

  44. L. D. Westbrook, A. W. Nelson, P. J. Flddument, and I. D. Henning, “Performance of strongly-coupled distributed feedback lasers operating at λ = 1.5 μm,” 9th IEEE Int. Semiconductor Laser Conf., Rio de Janeiro, 1984, pp. 14–15.

    Google Scholar 

  45. K. Kurumada and T. Ikegami, “Distributed feedback laser for optical transmission system,” Conf. Opt. Fiber Commun., San Diego, February 1985, paper WC-1.

    Google Scholar 

  46. T. L. Koch and J. E. Bowers, “Nature of wavelength chirping in directly modulated semiconductor lasers,” Electron. Lett., 20:1038–1039(1984).

    Article  Google Scholar 

  47. F. Koyama and Y. Suematsu, “Dynamic wavelength shift of dynamic-single-mode (DSM) lasers and its influence on the transmission bandwidth of single mode fibers,” Nat. Conv. Rec. of IECE Japan, Matsuyama, S 5–8, 1984.

    Google Scholar 

  48. A. H. Gnauk, B. L. Kasper, R. A. Linke, R. W. Dawson, T. L. Koch, T. J. Bridges, E. G. Burkhardt, R. T. Yen, D. P. Wilt, J. C. Campbell, K. Ciemiecki Nelson, and L. G. Cohen, “4 Gb/s transmission over 103 km of optical fiber using a novel electronic multiplexer/demultiplexer,” Conf. Opt. Fiber Commun. San Diego, February 1985, Postdeadline Paper no. 2.

    Google Scholar 

  49. C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum. Electron., QE-18: 259–264 (1982).

    Article  Google Scholar 

  50. K.-Y. Liou, N. K. Dutta, and C. A. Burrus, “Linewidth-narrowed distributed feedback injection lasers with long cavity length and detuned Bragg wavelength,” Appl. Phys. Lett., 50:489–491(1987).

    Article  Google Scholar 

  51. S. Ogita, M. Yano, H. Ishikawa, and H. Imai, “Linewidth reduction in DFB laser by detuning effect,” Electron. Lett., 23:393–394(1987).

    Article  Google Scholar 

  52. R. A. Linke and K. J. Pollack, “Linewidth vs. length dependence for external cavity laser,” 10th IEEE Int. Semiconductor Laser Conf., Kanazawa 1987, pp. 118–119.

    Google Scholar 

  53. R. W. Tkatch and A. R. Chraplyvy, “Regimes of feedback effects in 1.5 μm distributed feedback lasers,” J. Lightwave Technol., LT-4: 1655–1661 (1986).

    Article  Google Scholar 

  54. S. Murata, S. Yamazaki, I. Mito, and K. Kobayashi, “Spectral characteristics for 1.3 μm. monolithic external cavity DFB lasers,” Electron. Lett., 22: 1197–1198 (1986).

    Article  Google Scholar 

  55. Y. Yoshikuni and G. Motosugi, “Multielectrode distributed feedback laser for pure frequency modulation and chirping suppressed amplitude modulation,” J. Lightwave Technol., LT-5: 516–522 (1987).

    Article  Google Scholar 

  56. S. Murata, I. Mito, and K. Kobayashi, “Over 5.8-nm continuous wavelength tuning of 1.5 pm wavelength tunable DBR laser,” OFC/100C’87, Reno, 1987, paper WC3.

    Google Scholar 

  57. T. Ikegami, K. Kuroiwa, Y. Itaya, S. Shinohara, K. Hagimoto, and N. Inagaki, “1.5 μm transmission experiment with distributed feedback laser,” 8th Eur. Conf. Opt. Fiber Commun., Cannes, 1983, Postdeadline Paper no. 6.

    Google Scholar 

  58. G. Motosugi, M. Saruwatari, and M. Suzuki, “Distributed feedback lasers and laser modules for the F-1.6G system,” Rev. NTT Electrical Commun. Lab., 35:239–245(1987).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Van Nostrand Reinhold

About this chapter

Cite this chapter

Ikegami, T. (1989). Longitudinal Mode Control in Laser Diodes. In: Lin, C. (eds) Optoelectronic Technology and Lightwave Communications Systems. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-7035-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-7035-2_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-7037-6

  • Online ISBN: 978-94-011-7035-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics