Skip to main content
  • 359 Accesses

Abstract

Shift registers of simple form have been known since the days of vacuum tube circuits. Bipolar and MOS transistor versions of static and dynamic registers using discrete components followed in due course. The concept of a shift register involves the passage of charge along a line of capacitors by the sequential switching of transistors in response to clock pulses. This class of circuit has acquired the name bucket brigade since the action is reminiscent of the transfer of water buckets down a line of people. In 1970 integrated versions of these circuits were shown to be practical for delay and other applications. A MOS FET version of an integrated bucket-brigade circuit is shown in Fig. 10.1(a). The storage regions are p islands in the n substrate and the metal gates are offset. When the gates are negatively pulsed, conducting channels are created that link adjacent p-storage regions. The storage condition (V 1=V 2) is shown in Fig. 10.1(b) and the transfer condition (V 2 more negative than V 1) during which time positive charge flows from well 1 to well 2 is shown in Fig. 10.1(c). The equivalent circuit, considered as discrete components, is given in Fig. 10.1(d) and consists of a line of p-channel MOS FETs with the storage capacitors between the gates and drains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Further Reading Suggestions

  1. Abe, M., et al., “A CCD imager with SiO2 exposed photosensor arrays,” IEEE Int. Electron Devices Meeting, Technical Digest, Washington, D.C., 1977, p. 542.

    Google Scholar 

  2. Allan, R., “Semiconductor memories,” IEEE Spectrum, 12, Aug. 1975, p. 40.

    Google Scholar 

  3. Altman, L., “The new concept for memory and imaging: charge coupling,” Electronics, June 21, 1971, p. 50.

    Google Scholar 

  4. Altman, L., “Bucket brigade devices pass from principle to prototype,” Electronics, Feb. 29, 1972, p. 62.

    Google Scholar 

  5. Altman, L., “Charge-coupled devices move in on memories and analog signal processing,” Electronics, Aug. 8, 1974, p. 91.

    Google Scholar 

  6. Amelio, G.F., M.F. Tompsett, and G.E. Smith, “Experimental verification of the charge coupled device concept,” Bell Syst. Tech. J., 49, 1970, p. 593.

    Google Scholar 

  7. Amelio, G.F., W.J. Bertram, and M.F. Tompsett, “Charge-coupled imaging devices: design considerations,” IEEE Trans. Electron Devices, ED-18, 1971, p. 986.

    Article  Google Scholar 

  8. Amelio, G.F., “The impact of large CCD image sensing area arrays,” Proc. CCD 74 Int. Conf., Edinburgh, 1974, p. 133.

    Google Scholar 

  9. Aoki, M., et al., “A 1024 element linear CCD sensor with a new photodiode structure,” IEEE Int. Electron Devices Meeting, Technical Digest, Washington, D.C., 1977, p. 538.

    Google Scholar 

  10. Baertsch, R.D., et al., “The design and operation of practical charge-transfer transversal filters,” IEEE J. Solid-State Circuits, SC-11, 1976, p. 65.

    Article  Google Scholar 

  11. Baker, I.M., and J.D.E. Beynon, “Charge-coupled devices with submicron electrode separations,” Electronics Lett., 9, Feb. 8, 1973, p. 48.

    Article  Google Scholar 

  12. Barbe, D.F., “Imaging devices using the charge-coupled concept,” Proc. IEEE, 63, 1975, p. 38.

    Article  Google Scholar 

  13. Barbe, D.F., “Charge-coupled device and charge-injection device imaging,” IEEE J. Solid-State Circuits, SC-11, 1976, p. 109.

    Article  Google Scholar 

  14. Berger, J., J.S. Brugler, and R. Melen, “Measurement of transfer efficiency of chargecoupled devices,” IEEE J. Solid-State Circuits, SC-6, 1971, p. 421.

    Article  Google Scholar 

  15. Berglund, C.N., et al., “Two-phase stepped oxide CCD shift register using undercut isolation,” Appl. Phys. Lett., 20, 1972, p. 413.

    Article  Google Scholar 

  16. Berglund, C.N., and K.K. Thornber, “A fundamental comparison of incomplete charge transfer in charge transfer devices,” Bell Syst. Tech. J., 52, 1973, p. 147.

    Google Scholar 

  17. Bertram, W.J., et al., “A three-level metallization three-phase CCD,” IEEE Trans. Electron Devices, ED-21, 1974, p. 758.

    Article  Google Scholar 

  18. Beynon, J.D.E., “Charge-coupled devices,” IEE Electronics and Power, May 17, 1973, p. 188.

    Google Scholar 

  19. Bower, R.W., T.A. Zimmerman, and A.M. Mohsen, “The two-phase offset gate CCD,” IEEE Trans. Electron Devices, ED-22, 1975, p. 70.

    Article  Google Scholar 

  20. Bower, R.W., T.A. Zimmerman, and A.M. Mohsen, “Performance characteristics of the offset-gate charge-coupled device,” IEEE Trans. Electron Devices, ED-22, 1975, p. 72.

    Article  Google Scholar 

  21. Boyle, W.S., and G.E. Smith, “Charge coupled semiconductor devices,” Bell Syst. Tech. J., 49, 1970, p. 587.

    Google Scholar 

  22. Boyle, W.S., and G.E. Smith, “Charge-coupled devices — a new approach to MIS device structures,” IEEE Spectrum, 8, 1971, p. 18.

    Article  Google Scholar 

  23. Brodersen, R.W., D.D. Buss, and A.F. Tasch, Jr., “Experimental characterization of transfer efficiency of charge coupled devices,” IEEE Trans. Electron Devices, ED-22, 1975, p. 40.

    Article  Google Scholar 

  24. Brodersen, R.W., et al., “A 500 point Fourier transform using charge-coupled devices,” 1975 IEEE Int. Solid-State Circuits Conference Digest, p. 144.

    Google Scholar 

  25. Brodersen, R.W., C.R. Hewes, and D.D. Buss, “A 500 stage CCD transversal filter for spectral analysis,” IEEE J. Solid-State Circuits, SC-11, 1976, p. 75.

    Google Scholar 

  26. Brodersen, R.W., and S.P. Emmons, “Noise in buried channel charge-coupled devices,” IEEE J. Solid-State Circuits, SC-11, 1976, p. 147.

    Article  Google Scholar 

  27. Burke, H.K., and G.J. Michon, “Charge-injection imaging: operating techniques and performance characteristics,” IEEE J. Solid-State Circuits, SC-11, 1976, p. 121.

    Article  Google Scholar 

  28. Burt, D.J., “Charge-coupled devices and their applications,” IEE Electronics and Power, Feb. 6, 1975, p. 93.

    Google Scholar 

  29. Buss, D.D., et al., “Transversal filtering using charge-transfer devices,” IEEE J. Solid-State Circuits, SC-8, 1973, p. 138.

    Article  Google Scholar 

  30. Carnes, J.E., W.F. Kosonocky, and E.G. Ramberg, “Drift-aiding fringing fields in charge-coupled devices,” IEEE J. Solid-State Circuits, SC-6, 1971, p. 322.

    Article  Google Scholar 

  31. Carnes, J.E., and W.F. Kosonocky, “Sensitivity and resolution of charge coupled imagers at low light levels,” RCA Rev., 33, 1972, p. 607.

    Google Scholar 

  32. Chou, S., “Design of a 16384-bit serial charge-coupled memory device,” IEEE J. Solid-State Circuits, SC-11, 1976, p. 10.

    Article  Google Scholar 

  33. Chowaniec, A., “Charge transfer device analogue delay lines,” IEE Electronics and Power,” Dec. 12, 1974, p. 1122.

    Google Scholar 

  34. Chowaniec, A., and G.S. Hobson, “A wide-band quadrature phasing system using charge transfer devices,” Solid-State Electronics, 19, 1976, p. 201.

    Article  Google Scholar 

  35. Cole, B., and S.E. Scrupski, “CCD memory system stores megabits,” Electronics, Aug. 21, 1975, p. 109.

    Google Scholar 

  36. Collet, M.G., “An experimental method to analyze trapping centers in silicon at very low concentrations,” Solid-State Electronics, 18, 1975, p. 1077.

    Article  Google Scholar 

  37. Collet, M.G., “The influence of bulk traps on the charge-transfer inefficiency of bulk charge-coupled devices,” IEEE J. Solid-State Circuits, SC-11, 1976, p. 156.

    Article  Google Scholar 

  38. Collet, M.G., “A new method to measure very low bulk trap densities in silicon,” IEEE Trans. Electron Devices, ED-22, 1975, p. 1058.

    Article  Google Scholar 

  39. Collins, D.R., et al., “Charge-coupled devices fabricated using aluminum-anodized aluminum-aluminum double-level metalization,” J. Electrochem. Soc., 120, 1973, p. 521.

    Article  Google Scholar 

  40. Copeland, M.A., D. Roy, and C.C. Chan, “A multiplexed video bandwidth CCD delay line,” 1975 IEEE Int. Solid-State Circuits Conference Digest, p. 146.

    Google Scholar 

  41. Elsaid, M.H., and S.G. Chamberlain, “Short-channel effects on the input stage of surface-channel CCD’ s,” IEEE Trans. Electron Devices, ED-24, 1977, p. 1164.

    Article  Google Scholar 

  42. El-Sissi, H., and R.S.C. Cobbold, “One dimensional study of buried-channel chargecoupled devices,” IEEE Trans. Electron Devices, ED-21, 1974, p. 437.

    Article  Google Scholar 

  43. El-Sissi, H., and R.S.C. Cobbold, “Potentials and fields in buried-channel CCDs: a two dimensional analysis and design study,” IEEE Trans. Electron Devices, ED-22, 1975, p. 77.

    Article  Google Scholar 

  44. Emmons, S.P., A.F. Tasch, and J.M. Caywood, “A low-noise CCD input with reduced sensitivity to threshold voltage,” IEEE Int. Electron Devices Meeting, Technical Digest, Washington, D.C., 1974, p. 233.

    Google Scholar 

  45. Esser, L.J.M., “Peristaltic charge-coupled device: a new type of charge-transfer device,” Electronic Lett., 8, Dec. 14, 1972, p. 620.

    Article  Google Scholar 

  46. Esser, L.J.M., “The peristaltic charge coupled device for high speed charge transfer,” IEEE Int. Solid-State Circuits Conf., 1974 Digest of Tech. Papers, p. 28.

    Google Scholar 

  47. Goser, K., and K. Knauer, “Nonvolatile CCD memory with MNOS storage capacitors,” IEEE J. Solid-State Circuits, SC-9, 1974, p. 148.

    Article  Google Scholar 

  48. Haken, R.A., et al., “Charge-coupled structures with self-aligned submicron gaps,” IEEE Trans. Electron Devices, ED-22, 1975, p. 289.

    Article  Google Scholar 

  49. Hamaoui, H., G. Amelio, and J. Rothstein, “Application of an area-imaging chargecoupled device for television cameras,” IEEE Trans., BTR-20, 1974, p. 78.

    Google Scholar 

  50. Hara, H., “A theoretical analysis on fundamental performances of charge-coupled devices,” Electronics and Communications in Japan, 54-C, 1971, p. 133.

    Google Scholar 

  51. Hartseil, G.A., and A.R. Kmetz, “Design and performance of a three phase double level metal 160 × 100 element CCD imager,” IEEE Electron Devices Meeting Abstracts, Washington, Dec, 1974, p. 549.

    Google Scholar 

  52. Heller, L.G., and H-S Lee, “Digital signal transfer in charge-transfer devices,” IEEE J. Solid-State Circuits, SC-8, 1973, p. 116.

    Article  Google Scholar 

  53. Hinkle, F.E., “C-MOS decade divider clocks bucket brigade delay line,” Electronics, Aug. 7, 1975, p. 117.

    Google Scholar 

  54. Holmes, F.E., and C.A.T. Salama, “A V groove oxide isolated bipolar bucket brigade shift register,” Solid-State Electronics, 17, 1974, p. 1193.

    Article  Google Scholar 

  55. Jayadevaiah, T.S., and J. Laur, “Simple model for charge-coupled devices,” Electronics Lett., 7, Dec. 16, 1971, p. 752.

    Article  Google Scholar 

  56. Jespers, P.G., F. Van de Wiele, and M.H. White (Eds.), Solid State Imaging, Noordhoff, Leyden, 1976.

    Google Scholar 

  57. Kim, C-K, and R.H. Dyck, “Low light level imaging with buried channel charge coupled devices,” Proc. IEEE, 61, 1973, p. 1146.

    Article  Google Scholar 

  58. Kim, C-K, “Two-phase charge coupled linear imaging devices with self-aligned implanted barrier,” IEEE Electron Devices Meeting Abstracts, Washington, D.C., Dec. 1974, p. 55.

    Google Scholar 

  59. Kim. C-K, and M. Lenzlinger, “Charge transfer in charge-coupled devices,” J. Appl. Phys., 42, 1971, p. 3586.

    Article  Google Scholar 

  60. Kosonocky, W.F., and J.E. Carnes, “Charge-coupled digital circuits,” IEEE J. Solid-State Circuits, SC-6, 1971, p. 314.

    Article  Google Scholar 

  61. Kosonocky, W.F., et al., “Control of blooming in charge-coupled images,” RCA Rev., 35, 1974, p. 3.

    Google Scholar 

  62. Kovac, M.G., et al., “Solid state imaging emerges from charge transport,” Electronics, Feb. 28, 1972, p. 72.

    Google Scholar 

  63. Krambeck, R.H., “Zero loss transfer across gaps in a CCD,” Bell Syst. Tech. J., 50, 1971, p. 3169.

    Google Scholar 

  64. Krambeck, R.H., R.H. Waiden, and K.A. Pickar, “A doped surface two-phase CCD,” Bell Syst. Tech. J., 51, 1972, 1849.

    Google Scholar 

  65. Krambeck, R.H., et al., “A 4160 bit C4D serial memory,” IEEE J. Solid-State Circuits, SC-9, 1974, p. 436.

    Article  Google Scholar 

  66. Lancaster, A.L., and J.M. Hartman, “A recirculating CCD with novel input and output structures,” IEEE Electron Devices Meeting Abstracts, Washington, D.C., Dec. 1974, p. 108.

    Google Scholar 

  67. Lee, H-S, and L.G. Heller, “Charge-control method of charge-coupled device transfer analysis,” IEEE Trans. Electron Devices, ED-19, 1972, p. 1270.

    Google Scholar 

  68. Leess, A.W., and W.D. Ryan, “A simple model of a buried channel charge coupled device,” Solid-State Electronics, 17, 1974, p. 1163.

    Article  Google Scholar 

  69. Leonberger, F.J., A.L. McWhorter, and T.C. Harman, “PbS MIS devices for chargecoupled infrared imaging applications,” Appl. Phys. Lett., 26, 1975, p. 704.

    Article  Google Scholar 

  70. Matsumoto, H., et al., “Zig-Zag transfer CCD image sensor,” Professional Group on semiconductors and semiconductor device of IECE Japan, SSD 77-3, 1977.

    Google Scholar 

  71. Mattern, J., and D. Lampe, “A reprogrammable filter band using CCD discrete analog signal processing,” 1975 IEEE Int. Solid-State Circuits Conference Digest, p. 148.

    Google Scholar 

  72. McKenna, J., and N.L. Schryer, “The potential in a charge coupled device with no mobile minority carriers and zero plate separation,” Bell Syst. Tech. J., 52, 1973, p. 669.

    Google Scholar 

  73. McKenna, J., and N.L. Schryer, “The potential in a charge-coupled device with no mobile minority carriers,” Bell Syst. Tech. J., 52, 1973, p. 1765.

    Google Scholar 

  74. Melen, R.D., and J.D. Meindl, “One-phase CCD: a new approach to charge-coupled device clocking,” IEEE J. Solid-State Circuits, SC-7, 1972, p. 92.

    Article  Google Scholar 

  75. Melen, R., and D. Buss, Charge-Coupled Devices: Technology and Applications, IEEE Press, N.Y., 1977.

    Google Scholar 

  76. Mifune, T., et al., “An improvement on structure of charge-coupled devices,” Proc. 4th Conf. Solid State Devices, Tokyo 1972 (J. Japan. Soc. Appl. Phys. Supplement, 42, 1973, p. 207).

    Google Scholar 

  77. Mohsen, A.M., et al., “The influence of interface states on incomplete charge transfer in overlapping gate charge-coupled devices,” IEEE J. Solid-State Circuits, SC-8, 1973, p. 125.

    Article  Google Scholar 

  78. Mohsen, A.M., and M.F. Tompsett, “The effects of bulk traps on the performance of bulk channel charge-coupled devices,” IEEE Trans. Electron Devices, ED-21, 1974, p.701.

    Article  Google Scholar 

  79. Mohsen, A.M., M.F. Tompsett, and C.H. Séquin, “Noise measurements in charge-coupled devices,” IEEE Trans. Electron Devices, ED-22, 1975, p. 209.

    Article  Google Scholar 

  80. Mohsen, A.M., et al., “A 64 kbit block addressed charge-coupled memory,” IEEE J. Solid-State Circuits, SC-11, 1976, p. 49.

    Article  Google Scholar 

  81. Mohsen, A.M., and T.F. Retajczyk, Jr., “Fabrication and performance of offset-mask charge-coupled devices,” IEEE J. Solid-State Circuits, SC-11, 1976, p. 180.

    Article  Google Scholar 

  82. Nelson, R.D., “Accumulation-mode charge-coupled device,” Appl. Phys. Lett., 25, 1974, p. 568.

    Article  Google Scholar 

  83. Ong, D.G., and R.F. Pierret, “Thermal carrier generation in charge-coupled devices,” IEEE Trans. Electron Devices, ED-22, 1975, p. 593.

    Article  Google Scholar 

  84. Pike, W.S., et al., “An experimental solid-state TV camera using a 32 × 44 element charge-transfer bucket-brigade sensor,” RCA Rev., 33, 1972, p. 483.

    Google Scholar 

  85. Powell, R.J., C.N. Berglund, J.T. Clemens, and E.H. Nicollian, “Two-phase stepped oxide CCD shift register using undercut isolation,” Appl. Phys. Lett., 20, 1972, p. 413.

    Article  Google Scholar 

  86. Rosenblatt, A., “For CCDs, imager is the beginning,” Electronics, Sept. 27, 1973, p. 71.

    Google Scholar 

  87. Sangster, F.L.J., “Integrated MOS and bipolar analog delay using bucket-brigade capacitor storage,” IEEE, ISSCC Digest Tech. Papers, 1970, p. 74.

    Google Scholar 

  88. Schroder, D.K., “A two-phase germanium charge-coupled device,” Appl. Phys. Lett., 25, 1974, p. 747.

    Article  Google Scholar 

  89. Schuermeyer, F.L., et al., “New structures for charge coupled devices,” Proc. IEEE, 60, 1972, p. 1444.

    Article  Google Scholar 

  90. Sealer, D.A., and M.F. Tompsett, “A dual-differential analog charge-coupled device for time-shared recursive filters,” 1975 IEEE Int. Solid-State Circuits Conference Digest, p. 152.

    Google Scholar 

  91. Sekula, J.A., P.R. Prince, and C.S. Wang, “Non-recursive matched filters using charge-coupled devices,” IEEE Electron Devices Meeting Abstracts, Washington, Dec. 1974, p. 244.

    Google Scholar 

  92. Sequin, C.H., “Interlacing in charge-coupled imaging devices,” IEEE Trans. Electron Devices, ED-20, 1973, p. 535.

    Article  Google Scholar 

  93. Séquin, C.H., “Two-dimensional charge transfer arrays,” IEEE J. Solid-State Circuits, SC-9, 1974, p. 134.

    Article  Google Scholar 

  94. Séquin, C.H., et al., “Charge-coupled area image sensor using three levels of poly-silicon,” IEEE Trans. Electron Devices, ED-21, 1974, p. 712.

    Article  Google Scholar 

  95. Sequin, C.H., and M.F. Tompsett, Charge Transfer Devices, Academic Press, N.Y., 1975.

    Google Scholar 

  96. Sequin, C.H., et al., “All-solid-state camera for the 525-line television format,” IEEE J. Solid-State Circuits, SC-11, 1976, p. 115.

    Article  Google Scholar 

  97. Shortes, S.R., et al., “Characteristics of thinned backside-illuminated charge-coupled device imagers,” Appl. Phys. Lett., 24, 1974, p. 565.

    Article  Google Scholar 

  98. Steckl, A.J., et al., “Application of charge-coupled devices to infrared detection and imaging,” Proc. IEEE, 63, 1975, p. 67.

    Article  Google Scholar 

  99. Strain, R.J., “Properties of an idealized traveling wave charge coupled device,” IEEE Trans. Electron Devices, ED-19, 1972, p. 1119.

    Article  Google Scholar 

  100. Tanikawa, K., Y. Ito, and H. Sei, “Evaluation of dark-current non-uniformity in a charge-coupled device,” Appl. Phys. Lett., 28, 1976, p. 285.

    Article  Google Scholar 

  101. Tasch, A.F., et al., “Charge capacity analysis of the charge-coupled RAM-cell,” IEEE J. Solid-State Circuits, SC-11, 1976, p. 575.

    Article  Google Scholar 

  102. Terman, L.M., and L.G. Heller, “Overview of CCD memory,” IEEE J. Solid-State Circuits, SC-11, 1976, p. 4.

    Article  Google Scholar 

  103. Tiemann, J.J., et al., “Charge-transfer devices filter complex communications signals,” Electronics, Nov. 14, 1974, p. 113.

    Google Scholar 

  104. Tompsett, M.F., “A simple charge regenerator for use with charge transfer devices and the design of functional logic arrays,” IEEE J. Solid-State Circuits, SC-7, 1972, p. 237.

    Article  Google Scholar 

  105. Tompsett, M.F., “The quantitative effects of interface states on the performance of charge-coupled devices,” IEEE Trans. Electron Devices, ED-20, 1973, p. 45.

    Article  Google Scholar 

  106. Tompsett, M.F., et al., “Charge-coupled imaging devices: experimental results,” IEEE Trans. Electron Devices, ED-18, 1972, p. 992.

    Google Scholar 

  107. Tompsett, M.F., and E.J. Zimany, Jr., “Use of charge-coupled devices for delaying analog signals,” IEEE J. Solid-State Circuits, SC-8, 1973, p. 151.

    Article  Google Scholar 

  108. Tompsett, M.F., B.B. Kosicki, and D. Kahng, “Measurements of transfer inefficiency of 250-element undercut-isolated charge coupled devices,” Bell Syst. Tech. J., 52, 1973, p.1.

    Google Scholar 

  109. Tompsett, M.F., et al., “Charge-coupling improves its image, challenging video camera tubes,” Electronics, Jan. 18, 1973, p. 162.

    Google Scholar 

  110. Ullrich, M., and M. Hegendörfer, “TV receiver puts two pictures on screen at same time,” Electronics, Sept. 1, 1977, p. 102.

    Google Scholar 

  111. Waiden, R.H., et al., “The buried channel charge coupled device,” Bell Syst. Tech. J., 51, 1972, p. 1635.

    Google Scholar 

  112. Weimer, P.K., et al., “Video processing in charge-transfer image sensors by recycling of signals through the sensor,” RCA Rev., 35, 1974, p. 341.

    Google Scholar 

  113. Wen, D.D., et al., “A distributed floating-gate amplifier in charge-coupled devices,” IEEE Int. Solid-State Circuits Conf., 1975, Philadelphia Digest of Tech. Papers, p. 24.

    Google Scholar 

  114. White, M.H., et al., “A nonvolatile charge-addressed memory (NOVCAM) cell,” IEEE Electron Devices Meeting Abstracts, Washington, Dec. 1974, p. 115.

    Google Scholar 

  115. Zimmerman, T.A., and D.F. Barbe, A new role for charge-coupled devices: digital signal processing,” Electronics, Mar. 31, 1977, p. 97.

    Google Scholar 

  116. Buss, D.D. et al., “Infrared monolithic HgCdTe IR CCD focal plane technology,” IEEE International Electron Devices Meeting, Technical Digest, Washington, D.C., Dec. 1978, p. 496.

    Google Scholar 

  117. Andrews, A.M., “Hybrid infrared imaging arrays,” IEEE International Electron Devices Meeting, Technical Digest, Washington, D.C., Dec. 1978, p. 505.

    Google Scholar 

  118. Blouke, M.M., J.E. Hall and J.F. Breitzmann, “A 640 kilopixel CCD imager for space applications,” IEEE International Electron Devices Meeting, Technical Digest, Washington, D.C., Dec. 1978, p. 412.

    Google Scholar 

  119. Iversen, W.R., “64-K CCDs face an uncertain future,” Electronics, Jan. 4, 1979, p. 85.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1980 A. G. Milnes

About this chapter

Cite this chapter

Milnes, A.G. (1980). Charge-Transfer Devices. In: Semiconductor Devices and Integrated Electronics. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-7021-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-7021-5_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-7023-9

  • Online ISBN: 978-94-011-7021-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics