Skip to main content

Glucocorticoid-induced lymphocyte death

  • Chapter
Cell death in biology and pathology
  • 171 Accesses

Abstract

Glucocorticoids are the principal steroid hormones produced by the inner zones of the adrenal cortex. The natural glucocorticoids, present in amounts which vary according to species, are Cortisol and corticosterone. Corticosterone is generally about half as active as Cortisol. Dexamethasone, prednisolone, triamcinolone acetonide and certain other synthetic analogues of glucocorticoids which are widely used therapeutically and experimentally have some advantages over the natural hormones with regard to both activity and specificity. Dexamethasone, for example, is 10 to 100 times more active than Cortisol, has about 10 times higher affinity for glucocorticoid receptors, and is a ‘purer’ glucocorticoid in the sense that it cross-reacts much less with mineralocorticoid receptors. Cortisone and prednisone, once thought to be glucocorticoids, are now known to have no activity in themselves but to require conversion, respectively, to Cortisol and prednisolone (cf. Munck and Leung, 1977).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aronow, L. and Gabourel, J. D. (1962), Development of a hydrocortisone- resistant subline of mouse lymphoma in vitro. Proc. Soc. Exp. Biol. Med, 111, 348–349.

    Google Scholar 

  • Baxter, J.D., Harris, A. W., Tomkins, G. M. and Cohn, M. (1971), Glucocorticoid receptors in lymphoma cells in culture: relationship to glucocorticoid killing activity.Science, 171, 189–191.

    Google Scholar 

  • Bell, P. A. and Borthwick, N. M. (1979a), Regulation of transcription in rat thymus cells by glucocorticoids. J. Steroid Biochem, 11, 381–387.

    Google Scholar 

  • Bell, P.A. and Borthwick, N.M. (eds.) (1979b), Glucocorticoid Action and Leukemia. Alpha Omega Publishers Ltd., Cardiff, Wales.

    Google Scholar 

  • Blomgren, H. and Andersson, B. (1969), Evidence for a small pool or immunocompetent cells in the mouse thymus. Exp. Cell Res, 57, 1 85–192.

    Google Scholar 

  • Bourgeois, S. and Newby, R. (1977), Diploid and haploid states of the gluco-corticoid receptor gene of mouse lymphoid cell lines. Cell, 11, 423–430.

    Google Scholar 

  • Bourgeois, S. (1979), Genetic analysis of glucocorticoid-induced lymphocyto- lysis. In Steroid Receptors and the Mangement of Cancer, vol. II, (eds. E. B. Thompson and M. E. Lippman ), CRC Press, Boca Raton, FL, pp. 99–111.

    Google Scholar 

  • Burton, A. F., Storr, J. M. and Dunn, W. L. (1967), Cytolytic action of cortico-steroids on thymus and lymphoma cells in vitro. Can. J. Biochem, 45, 289–297.

    Google Scholar 

  • Bush, I.E. (1953), Species differences in adrenocortical secretion. J. Endocrinol, 9, 95–100.

    Google Scholar 

  • Butler, W.T. and Rossen, R. D. (1973a), Effects of corticosteroids on immunity in man. J. Clin. Invest, 52, 2629–2640.

    Google Scholar 

  • Butler, W.T. and Rossen, R.D. (1973b), Effects of corticosteroids on immunity in man. II. Alterations in serum protein components after methylprednisolone. Transplant Proc, 5, 1215–1219.

    Google Scholar 

  • Caffey, J. and di Liberti, C. (1959), Acute atrophy of the thymus induced by adrenocorticosteroids; observed roentgenographically in living human infants. Am. J. Roentgenol, 82, 530–540.

    Google Scholar 

  • Caffey, J. and Silbey, R. (1960), Regrowth and overgrowth of the thymus after atrophy induced by the oral administration of adrenocorticosteroids to human infants. Pediatrics, 26, 762–770.

    Google Scholar 

  • Claman, H.N. (1972), Corticosteroids and lymphoid cells. N. Engl. J. Med, 287, 388–397.

    Google Scholar 

  • Claman, H.N., Moorhead, J.W. and Benner, W. H. (1971), Corticosteroids and lymphoid cells in vitro. I. Hydrocortisone lysis of human, guinea pig, and mouse thymus cells. J. Lab. Clin. Med, 78, 499–507.

    Google Scholar 

  • Cohen, J. J., Fischback, M. and Claman, H.N. (1970), Hydrocortisone resistance of graft vs host activity in mouse thymus, spleen and bone marrow. J. Immunol, 105, 1146–1150.

    Google Scholar 

  • Cowan, W. K. and Sorensen, G. D. (1964), Electron microscopic observations of acute thymic involution produced by hydrocortisone. Lab. Invest, 13, 353–370.

    Google Scholar 

  • Crabtree, G. R., Gillis, S., Smith, K. A. and Munck, A. (1979a), Glucocorticoids and immune responses. Arthritis Rheum, 22, 1246–1256.

    Google Scholar 

  • Crabtree, G. R., Gillis, S., Smith, K. A. and Munck, A. (1980), Mechanisms of glucocorticoid induced immunosuppression: Inhibitory effects on expression of Fc receptors and production of T-cell growth factor. J. Steroid Biochem, 12, 445–449.

    Google Scholar 

  • Crabtree, G. R., Smith, K. A. and Munck, A. (1978), Glucocorticoid receptors and sensitivity of isolated human leukemia and lymphoma cells. Cancer Res, 38, 4268–4272.

    Google Scholar 

  • Crabtree, G. R., Smith, K. A. and Munck, A. (1979b), Glucocorticoid receptors and in vitro sensitivity of cells from patients with leukemia and lymphoma: A reassessment. In Glucocorticoid Action and Leukemia (eds. P.A. Bell and N.M. Borthwick ), Alpha Omega Publishers Ltd., Cardiff, Wales, pp. 191–204.

    Google Scholar 

  • Dale, D. C., Fauci, A. S. and Wolfe, S. M. (1974), Alternate day prednisone therapy. Leukocyte kinetics and susceptibility to infections. N. Engl. J. Med, 291, 1154–1158.

    Google Scholar 

  • Davis, J. M., Chan, A.K. and Thompson, E. A., Jr. (1980), Nonmutational alteration in glucocorticoid sensitivity of lymphosarcoma PI 798. J. Natl. Cancer Inst, 64, 55–62.

    Google Scholar 

  • Dougherty, T. F., Berliner, M. L., Schneebeli, G. L. and Berliner, D. L. (1964), Hormonal control of lymphatic structure and function. Ann. N.Y. Acad. Sci, 113, 825–843.

    Google Scholar 

  • Dougherty, T. F. and White, A. (1945), Functional alterations in lymphoid tissue induced by adrenal cortical secretion. Am. J. Anat, 77, 81–116.

    Google Scholar 

  • Duval, D., Dardenne, M., Dausse, J. P. and Homo, F. (1977), Glucocorticoid receptors in corticosensitive and corticoresistant thymocyte subpopulations. II. Studies with hydrocortisone treated mice. Biochim. Biophys. Acta, 496, 312–320.

    Google Scholar 

  • Ezdinli, E. Z., Stutzman, L., Aungst, C.W. and Firat, D. (1969), Corticosteroid therapy for lymphomas and chronic lymphocytic leukemia. Cancer, 23, 900–909.

    Google Scholar 

  • Fajer, A.B. and Vogt, M. (1963), Adrenocortical secretion in the guinea-pig. J. Physiol. (London), 169, 373–385.

    Google Scholar 

  • Fauci, A. S. (1978), Mechanisms the immunosuppressive and anti-inflammatory effects of glucocorticosteroids. J. Immunopharmacol, 1, 1–25.

    Google Scholar 

  • Fauci, A. S. and Dale, D. C. (1974), The effect of in vivo hydrocortisone on sub- populations of human lymphocytes. J. Clin. Invest, 53, 240–246.

    Google Scholar 

  • Fauci, A. S., Dale, D.C. and Balow, J. E. (1976), Glucocorticoid therapy: mechanisms of action and clinical considerations. Ann. Int. Med, 84, 304–315.

    Google Scholar 

  • Fauci, A. S., Pratt, K. R. and Whalen, G. (1977), Activation of human B lymphocytes. IV. Regulatory effects of corticosteroids on the triggering signal in the plaque-forming cell response of human peripheral blood B lymphocytes to polyclonal activation. J. Immunol, 119, 598–603.

    Google Scholar 

  • Foley, J. E., Jeffries, M. and Munck, A. (1980), Glucocorticoid effects on incorporation of lipid and protein precursors into rat thymus cell fractions. J. Steroid Biochem, 12, 231–243.

    Google Scholar 

  • Frenkel, J. K. and Havenhill, M.A. (1963), The corticoid sensitivity of golden hamsters, rats and mice. Effects of dose, time and route of administration. Lab. Invest, 12, 1204–1220.

    Google Scholar 

  • Giddings, S.J. and Young, D.A. (1974), An effect in vitro of physiological levels of Cortisol and related steroids on the structural integrity of the nucleus in rat thymic lymphocytes as measured by resistance to lysis. J. Steroid. Biochem, 5, 587–595.

    Google Scholar 

  • Gillis, S., Crabtree, G. R. and Smith, K. A. (1979a), Glucocorticoid-induced inhibition of T cell growth factor production. I. The effect on mitogen- induced lymphocyte proliferation. Immunol, 123, 1624–1631.

    Google Scholar 

  • Gillis, S., Crabtree, G. R. and Smith, K. A. (1979b), Glucocorticoid-induced inhibition of T cell growth factor production. II. The effect on the in vitro generation of cytotoxic T cells. J. Immunol, 123, 1631–1635.

    Google Scholar 

  • Gillis, S., Ferm, M.M., Ou, W. and Smith, K. A. (1978), T cell growth factor: parameters of production and a quantitative microassay for activity. J. Immunol, 120, 2027–2032.

    Google Scholar 

  • Gillis, S. and Smith, K. A. (1977), Long term culture of tumor specific cytotoxic T cells. Nature (London), 268, 154–156.

    Google Scholar 

  • Glasser, L., Huestis, D. W. and Jones, J. F. (1977), Functional capabilities of steroid- recruited neutrophils harvested for clinical transfusion. N. Engl J. Med, 297, 1033–1036.

    Google Scholar 

  • Hackney, J. J., Gross, S. R., Aronow, L. and Pratt, W. B. (1970), Specific glucocorticoid binding macromolecules from mouse fibroblasts growing in vitro: A possible steroid receptor for growth inhibition. Mol Pharmacol, 6, 500–512.

    Google Scholar 

  • Harmon, J. M., Norman, M. R. and Thompson, E. B. (1979a), Human leukemic cell lines in culture — a model system for the study of glucocorticoid-induced lymphocytolysis. In Steroid Receptors and the Management of Cancer, vol. II (eds. E.B. Thompson and M.E. Lippman ), CRC Press, Boca Raton, FL, pp. 113–129.

    Google Scholar 

  • Harmon, J.M., Norman, M. R., Fowlkes, B.J. and Thompson, E.B. (1979b), Dexamethasone induces irreversible Gi arrest and death of a human lymphoid cell line. J. Cell. Physiol, 98, 267–278.

    Google Scholar 

  • Harris, A.W. (1970), Differentiated functions expressed by cultured mouse lymphoma cells. Exp. Cell Res, 60, 341–353.

    Google Scholar 

  • Harris, A.W., Bankhurst, A.D., Mason, S. and Warner, N. L. (1973), Differentiated functions expressed by cultured mouse lymphoma cells: II. O Antigen, surface immunoglobin and a receptor for antibody on cells of a thymoma cell line. Immunol, 110, 431–438.

    Google Scholar 

  • Haynes, B.F. and Fauci, A. S. (1978), The differential effect of in vivo hydro-cortisone on the kinetics of subpopulations of human peripheral blood thymus-derived lymphocytes. J. Clin. Invest, 61, 703–707.

    Google Scholar 

  • Homo, F., Duval, D., Thierry, C. and Serrou, B. (1979), Human lymphocyte subpopulations: effects of glucocorticoids in vitro. J. Steroid Biochem, 10, 609–613.

    Google Scholar 

  • Horibata, K. and Harris, A.W. (1970), Mouse myelomas and lymphomas in culture. Exp. Cell Res, 60, 61–77.

    Google Scholar 

  • Kaiser, N. and Edelman, I. S. (1977), Calcium dependence of glucocorticoid- induced lymphocytolysis. Proc. Natl. Acad. Sci. U.S.A, 74, 638–642.

    Google Scholar 

  • Kaiser, N. and Edelman, I. S. (1978), Further studies on the role of calcium in glucocorticoid-induced lymphocytolysis. Endocrinology, 103, 936–942.

    Google Scholar 

  • Kaiser, N., Milholland, R. J. and Rosen, F. (1974), Glucocorticoid receptors and

    Google Scholar 

  • mechanism of resistance in the cortisol-sensitive and resistant lines of lymphosarcoma PI 798. Cancer Res., 34, 621–626.

    Google Scholar 

  • Kirkpatrick, A. F., Milholland, R.J. and Rosen, F. (1971), Stereospecific gluco-corticoid binding to subcellular fractions of the sensitive and resistant lymphosarcoma PI 978. Nature (London) New Biol, 232, 216–218.

    Google Scholar 

  • Krohn, P. L. (1954), The effect of ACTH on the reaction to skin homografts in rabbits. J Endocrinol, II, 71–77.

    Google Scholar 

  • Krohn, P. L. (1955), The effect of ACTH and cortisone on the survival of skin homografts and on the adrenal glands in monkeys (Macaca Mulata). J. Endocrinol, 12, 220–226.

    Google Scholar 

  • Lampkin, J. M. and Potter, M. (1958), Response to cortisone and development of cortisone resistance in a cortisone-sensitive lymphosarcoma of the mouse. J. Natl Cancer Inst, 20, 1091–1108.

    Google Scholar 

  • Leikin, S. L., Brubaker, C., Hartman, J. R., Murphy, M. L., Wolff, J. A. and Perrin, E. (1968), Varying prednisone dosage in remission induction of previously untreated childhood leukemia. Cancer, 21, 346–351.

    Google Scholar 

  • Leung, K. and Munck, A. (1975), Long-term incubation of rat thymus cells: cytolytic actions of glucocorticoids in vitro. Endocrinology, 97, 744–748.

    Google Scholar 

  • Levine, M.A. and Claman, H.N. (1970), Bone marrow and spleen: dissociation of immunologic properties by cortisone. Science, 167, 1515–1517.

    Google Scholar 

  • Lippman, M. E. and Barr, R. (1977), Glucocorticoid receptors in purified subpopu- lations of human peripheral blood lymphocytes. J. Immunol, 118, 1977–1981.

    Google Scholar 

  • Lippman, M. E., Perry, S. and Thompson, E. B. (1974), Cytoplasmic glucocorticoid- binding proteins in glucocorticoid-unresponsive human and mouse leukemia cell lines. Cancer Res, 34, 1572–1576.

    Google Scholar 

  • Long, D.A. (1957), The influence of corticosteroids on immunological responses to bacterial infections. Int. Arch. Allergy, 10, 5–12.

    Google Scholar 

  • Mauer, A.M. (1965), Diurnal variation of proliferative activity in the human bone marrow. Blood, 26, 1–7.

    Google Scholar 

  • Morgan, D.A., Ruscetti, F.W. and Gallo, R. (1976), Selective in vitro growth of T-lymphocytes from normal human bone marrows. Science, 193, 1007–1008.

    Google Scholar 

  • Munck, A. (1971), Glucocorticoid inhibition of glucose uptake by peripheral tissues: old and new evidence, molecular mechanisms, and physiological significance. Perspect. Biol Med, 14, 265–289.

    Google Scholar 

  • Munck, A. (1976), General aspects of steroid hormone-receptor interactions. In Receptors and Mechanism of Action of Steroid Hormones, Part I (ed. J. R. Pasqualini), Marcel Dekker, New York, pp. 1–40.

    Google Scholar 

  • Munck, A., Crabtree, G. R. and Smith, K. A. (1979), Glucocorticoid receptors and actions in rat thymocytes and immunologically stimulated human peripheral lymphocytes. In Glucocorticoid Hormone Action (eds. J. B. Baxter and G. G. Rousseau ), Springer-Verlag, Berlin, pp. 341–355.

    Google Scholar 

  • Munck, A. and Leung, K. (1977), Glucocorticoid Receptors and Mechanisms of action. In Receptors and Mechanism of Action of Steroid Hormones, Part II (ed. J. R. Pasqualini), Marcel Dekker, New York, pp. 311–397.

    Google Scholar 

  • Munck, A. and Young, D.A. (1975), Corticosteroids and lymphoid tissue. Hand. Physiol Sect 76, 231–243.

    Google Scholar 

  • Nicholson, M. L. and Young, D.A. (1978), Effect of glucocorticoid hormones in vitro on the structural integrity of nuclei in corticosteroid-sensitive and -resistant lines of lymphosarcoma PI 798. Cancer Res, 38, 3673–3680.

    Google Scholar 

  • Norman, M. R., Harmon, J.M. and Thompson, E. B. (1978), Use of a human lymphoid cell line to evaluate interactions between prednisolone and other chemotherapeutic agents. Cancer Res, 38, 4273–4278.

    Google Scholar 

  • Norman, M. R. and Thompson, E.B. (1977), Characterization of a glucocorticoid- sensitive human lymphoid cell line. Cancer Res, 37, 3785–3790.

    Google Scholar 

  • Nowell, P.C. (1961), Inhibition of human leukocyte mitosis by prednisolone in vitro. Cancer Res, 21, 1518–1521.

    Google Scholar 

  • Ranney, H. M. and Gellhorn, A. (1957), The effect of massive prednisone and prednisolone therapy on acute leukemia and malignant lymphoma. Am. J. Med, 22, 405–413.

    Google Scholar 

  • Rosen, J. M., Fina, J. J., Milholland, R.J. and Rosen, F. (1970), Inhibition of glucose uptake in lymphosarcoma PI 798 by Cortisol and its relationship to the biosynthesis of deoxyribonucleic acid. J. Biol. Chem, 245, 2074–2080.

    Google Scholar 

  • Rosen, J.M., Fina, J. J., Milholland, R.J. and Rosen, F. (1972), Inhibitory effect of Cortisol in vitro on 2-deoxyglucose uptake and RNA and protein metab-olism in lymphosarcoma PI 798. Cancer Res, 32, 350–355.

    Google Scholar 

  • Rosen, J.M., Rosen, F., Milholland, R.J. and Nichol, C. A. (1970), Effects of Cortisol on DNA metabolism in the sensitive and resistant lines of mouse lymphoma PI 798. Cancer Res, 30, 1129–1136.

    Google Scholar 

  • Rosenau, W., Baxter, J. D., Rousseau, G. G. and Tomkins, G. M. (1972), Mechanism of resistance to steroids: glucocorticoid receptor defect in lymphoma cells. Nature (London) New Biol, 237, 20–24.

    Google Scholar 

  • Schindler, W.J. and Knigge, K.M. (1959), Adrenal cortical secretion by the golden hamster. Endocrinology, 65, 739–747.

    Google Scholar 

  • Schmidt, T.J., Harmon, J.M. and Thompson, E.B. (1980), ‘Activation-labile’ glucocorticoid-receptor complexes of a steroid-resistant variant of CEM-C7 human lymphoid cells. Nature, 286, 507–510.

    Google Scholar 

  • Schrek, R. (1949), Cytotoxic action of hormones of the adrenal cortex according to the method of unstained cell counts. Endocrinology, 45, 317–334.

    Google Scholar 

  • Schrek, R. (1961), Cytotoxicity of adrenal cortex hormones on normal and malignant lymphocytes of man and rat. Proc. Soc. Exp. Biol. Med, 108, 328–332.

    Google Scholar 

  • Schrek, R. (1964), Prednisolone sensitivity and cytology of viable lymphocytes as test for chronic lymphocytic leukemia. J. Natl. Cancer Inst, 33, 837–847.

    Google Scholar 

  • Sibley, C. H. and Tomkins, G. M. (1974a), Isolation of lymphoma cell variants resistant to killing by glucocorticoids. Cell, 2, 213–220.

    Google Scholar 

  • Sibley, C. H. and Tomkins, G.M. (1974b), Mechanisms of steroid resistance. Cell, 2, 221–227.

    Google Scholar 

  • Sibley, C. H. and Yamamoto, K. R. (1979), Mouse lymphoma cells: Mechanisms of resistance to glucocorticoids. In Glucocorticoid Hormone Action (eds. J. D. Baxter and G. G. Rousseau ), Springer-Verlag, Berlin, pp. 357–376.

    Google Scholar 

  • Spackman, D. H. and Riley, V. (1977), Corticosterone concentrations in the mouse. Science, 200, 87.

    Google Scholar 

  • Stevens, J., Mashburn, L.T. and Hollander, V.P. (1969), Effect of 9a-fluoro- prednisolone and L-asparaginase on uridine incorporation into ribosomal RNA of PI 798 lymphosarcoma. Biochim. Biophys. Acta, 186, 332–339.

    Google Scholar 

  • Stevens, J. and Stevens, Y. M. (1975a), Cortisol-induced lymphocytolysis of PI 798 tumor cells in glucose-free, pyruvate-free medium. J. Natl. Cancer Inst, 54, 1493–1494.

    Google Scholar 

  • Stevens, J. and Stevens, Y.W. (1975b), Sequential irreversible, actinomycin D- sensitive, and cycloheximide-sensitive steps prior to Cortisol inhibition of uridine incorporation by PI 798 tumor lymphocytes. Cancer Res, 35, 2145–2153.

    Google Scholar 

  • Stevens, J., Stevens, Y.W., Behrens, U. and Hollander, V. P. (1973), Role of nucleoside transport in glucocorticoid-induced regression of mouse lymphoma PI 798. Biochem. Biophys. Res. Commun, 50, 799–806.

    Google Scholar 

  • Tuchinda, M., Newcomb, R.W., DeVald, B. L. (1972), Effect of prednisone treatment on the human immune response to keyhole limpet hemocyanin. Int. Arch. Allergy, 42, 533–544.

    Google Scholar 

  • Turnell, R.W. and Burton, A. F. (1974), Studies on the mechanism of resistance to lymphocytolysis induced by corticosteroids. Cancer Res, 34, 39–42.

    Google Scholar 

  • Turnell, R.W. and Burton, A. F. (1975), Glucocorticoid receptors and lympho-cytolysis in normal and neoplastic lymphocytes. Mol. Cell. Biochem, 9, 175–189.

    Google Scholar 

  • Turnell, R.W., Clarke, L.H. and Burton, A. F. (1973), Studies on the mechanism of corticosteroid-induced lymphocytolysis. Cancer Res, 33, 203–212.

    Google Scholar 

  • Vietti, T. J., Sullivan, M. P., Berry, D. H., Haddy, T. B., Haggard, M. E. and Blattner, R.J. (1965), The response of acute childhood leukemia to an initial and a second course of prednisone. Pediat, 66, 18–26.

    Google Scholar 

  • Waddell, A.W., Wyllie, A.H., Robertson, A.M.G., Mayne, K., Au, J. and Currie, A. R. (1979), Lethal and growth-inhibitory actions of glucocorticoids. In Glucocorticoid Action and Leukemia (eds. P.A. Bell and N.M. Borthwick ), Alpha Omega Publishers Ltd., Cardiff, Wales, pp. 75–83.

    Google Scholar 

  • Weissman, I. L. and Levy, R. (1975), In vitro cortisone sensitivity of in vivo cortisone-resistant thymocytes. Isr. J. Med. Sci, 11, 884–888.

    Google Scholar 

  • Wolff, J. A., Brubaker, C. A., Murphy, M. L., Pierce, M.I. and Severo, N. (1967), Prednisone therapy of acute childhood leukemia: prognosis and duration of response in 330 treated patients. J. Pediat, 70, 626–631.

    Google Scholar 

  • Yamamoto, K. R., Stampfer, M. R. and Tomkins, G. M. (1974), Receptors from glucocorticoid-sensitive lymphoma cells and two classes of insensitive clones: Physical and DNA-binding properties. Proc. Natl. Acad. Sci. U.S.A, 71, 3901–3905.

    Google Scholar 

  • Young, D. A., Nicholson, M. L., Guyette, W. A., Giddings, S.J., Mendelsohn, S. L., Nordeen, S. K. and Lyons, R.T. (1979), Biochemical endpoints of gluco-corticoid hormone action. In Glucocorticoid Action and Leukemia (eds. P. A. Bell and N.M. Borthwick ). Alpha Omega Publishers Ltd., Cardiff, Wales, pp. 53–74.

    Google Scholar 

  • Yu, D.T. Y., Clements, P. J., Paulus, H.E., Peter, J.B., Levy, J. and Barnett, E.V. (1974), Human lymphocyte subpopulations. Effects of corticosteroids. J. Clin. Invest, 53, 565–571.

    Google Scholar 

  • Zyskowski, L. P., Cushman, S.W. and Munck, A. (1979), Absence of an early effect of glucocorticoids on nonesterified fatty acid accumulation in isolated rat thymus cells.Steroid Biochem, 11, 1639–1640.

    Google Scholar 

  • Zyskowski, L. P. and Munck, A. (1979), Kinetic studies on the mechanism of glucocorticoid inhibition of hexose transport in rat thymocytes. J. Steroid Biochem, 10, 573–579.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Chapman and Hall Ltd

About this chapter

Cite this chapter

Munck, A., Crabtree, G.R. (1981). Glucocorticoid-induced lymphocyte death. In: Bowen, I.D., Lockshin, R.A. (eds) Cell death in biology and pathology. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-6921-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-6921-9_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-6923-3

  • Online ISBN: 978-94-011-6921-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics