Skip to main content

Non-metal oxides, sulphides and their derivatives

  • Chapter
The Chemistry of the Non-Metals
  • 93 Accesses

Abstract

Structurally there are many points of contrast between the oxides and sulphides of the non-metallic elements and their corresponding halides. This is often due to the 2-valence of oxygen and sulphur, which can lead to the formation of two covalent bonds by these elements. Thus oxygen may bond either to one other atom through a double bond [Fig. 3.1(a)] or to two other atoms through single bonds [Fig. 3.1(b)]. Situation (a) is apparently different from that in Fig. 3.1(c), where oxygen accepts a lone pair of electrons from a donor group M. Bonds to terminal oxygen atoms, however, generally possess some double bond character, whether of the (p-p)π or (p-d)π type, and in any case such formal distinctions can be unhelpful, and tend to disappear when a delocalized rather than a localized bond model is used. Bonding as in (b), in which oxygen is linked to two other atoms M, can lead to the formation of ring or chain structures.

The erratum of this chapter is available at http://dx.doi.org/10.1007/978-94-011-6904-2_8

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Jones, D. G. (Ed.) (1967), Chemistry and Industry, Clarendon Press, Oxford.

    Google Scholar 

  2. Gillespie, R. J. (1968), Accounts Chem. Research,1, 202; (1973)

    Article  Google Scholar 

  3. Gillespie, R. J. Endeavour, 53, 3.

    Google Scholar 

  4. Emeléus, H. J. and Anderson, J. S. (1960), Modern Aspects of Inorganic Chemistry, Routledge and Kegan Paul, London. Contains a useful account of

    Google Scholar 

  5. Thilo, E. (1965), Angew. Chem. Internat. Edn., 4, 1061.

    Article  Google Scholar 

  6. Koster, D. A. and Wagner, A. J. (1970), J. Chem. Soc. (A), 435.

    Google Scholar 

  7. Schulke, U. (1968), Z. Anorg. Chem., 360, 231.

    Article  Google Scholar 

  8. Lehninger, A. L. (1965), Bioenergetics, Benjamin, New York.

    Google Scholar 

  9. Barrer, R. M. (1966), Chem. in Britain, 2, 380.

    Google Scholar 

  10. Muetterties, E. L. (Ed.) (1967), The Chemistry of Boron and its Compounds, Wiley, New York.

    Google Scholar 

  11. Dislich, H. (1971), Angew. Chem. Internat. Edn., 10, 363. Production of glasses by hydrolysis and condensation of metal alkoxide complexes.

    Google Scholar 

  12. Jones, G. O. (Ed.) (1969), Glass, Methuen, London.

    Google Scholar 

  13. Thompson, R. (1971), Chem. in Britain,7, 140. Industrial aspects of boron chemistry.

    Google Scholar 

  14. Phillips, C. S. G. and Williams, R. J. P. (1965), Inorganic Chemistry, Vol I, Clarendon Press, Oxford. Several relevant sections on oxygen and oxides (Ch. 13, 14), oxidation state diagrams (Ch. 9), etc.

    Google Scholar 

  15. Appleman, E. H. (1969), Inorg. Chem., 8, 223.

    Article  Google Scholar 

  16. Nefedov, V. D., Norseyev, Yu. V., Toropuva, M. A. and Khalkin, V. A. (1968), Russ. Chem. Rev., 37, 87.

    Article  Google Scholar 

  17. Guillory, W. A. and Hunter, C. E. (1969), J. Chem. Phys., 50, 3516.

    Article  Google Scholar 

  18. Brattain, A. H., Cox, A. P. and Kuczkowski, R. L. (1969), Trans. Faraday Soc., 65, 1963.

    Article  Google Scholar 

  19. Addison, C. C. (1967), Chemistry in Non-aqueous lonising Solvents, Vol. III, Part I, Pergamon, Oxford. Chemistry of dinitrogen tetroxide.

    Google Scholar 

  20. Schmutzler, R. (1968), Angew. Chem. Internat. Edn., 7, 440.

    Article  Google Scholar 

  21. Milligan, D. E. and Jacox, M. E. (1971), J. Chem. Phys., 55, 1003.

    Article  Google Scholar 

  22. Cohen, B. and Peacock, R. D. (1970), Advances in Fluorine Chem., Vol. 6, Butterworths, London, p. 343.

    Google Scholar 

  23. Studier, H. M. and Appleman, E. H. (1971), J. Amer. Chem. Soc., 93, 2349.

    Article  Google Scholar 

  24. Pilopovich, D., Lindahl, C. B., Schack, C. J., Wilson, R. D. and Christe, K. O. (1972), Inorg. Chem., 11, 2189, and following papers.

    Article  Google Scholar 

  25. Holloway, J. H. (1968), Noble Gas Compounds, Methuen, London.

    Google Scholar 

  26. Claasen, H. H. and Huston, J. L. (1971), J. Chem. Phys., 55, 1505.

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1974 P. Powell and P.L. Timms

About this chapter

Cite this chapter

Powell, P., Timms, P.L. (1974). Non-metal oxides, sulphides and their derivatives. In: The Chemistry of the Non-Metals. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-6904-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-6904-2_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-412-12200-2

  • Online ISBN: 978-94-011-6904-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics