Advertisement

Theories of Electronic Energy Levels in Molecules and Solids

  • H. G. Drickamer
  • C. W. Frank
Part of the Studies in Chemical Physics book series (SCP)

Abstract

The most comprehensive available treatment for the analysis of the electronic behavior of molecules is that of molecular orbital (MO) theory. The theory has been used to describe many aspects of molecular structure and such diverse molecular properties as optical absorption spectra, electronic dipole moments, and electron and nuclear magnetic resonance. Numerous texts exist on the treatment of molecular orbital theory at various levels of approximation. Streitweiser [1] considers Hückel’s π electron theory in detail. Later works by Salem [2] and Murrell [3] develop the self-consistent theory for π electron systems. Finally, Pople and Beveridge [4] consider more recent approximate molecular orbital theories which may be applied to all valence electrons of a general three-dimensional molecule.

Keywords

Molecular Orbital Crystal Field Molecular Orbital Theory Electronic Energy Level Crystal Field Splitting 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Streitweiser, Molecular Orbital Theory for Organic Chemists, John Wiley & Sons. New York (1961).Google Scholar
  2. 2.
    L. Salem, The Molecular Orbital Theory of Conjugated Systems, W. A. Benjamin, New York (1966).Google Scholar
  3. 3.
    J. N. Murrell. The Theory of the Electronic Spectra of Organic Molecules, Methuen, London (1963).Google Scholar
  4. 4.
    J. A. Pople and D. L. Beveridge, Approximate Molecular Orbital Theory, McGraw-Hill, New York (1970).Google Scholar
  5. 5.
    M. Tinkham, Group Theory and Quantum Mechanics, McGraw-Hill, New York (1964).Google Scholar
  6. 6.
    R. S. Mulliken, C. A. Rieke, D. Orloff and H. Orloff, J. Chem. Phys. 17 1248 (1949).CrossRefGoogle Scholar
  7. 7.
    H. Bethe, Ann. Physik, 3 133 (1929).CrossRefGoogle Scholar
  8. 8.
    C. J. Ballhausen. Introduction to Ligand Field Theory, McGraw-Hill, New York (1962).Google Scholar
  9. 9.
    B. N. Figgis, Introduction to Ligand Fields, Interscience, New York (1966).Google Scholar
  10. 10.
    E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra, Cambridge University Press, London (1964).Google Scholar
  11. 11.
    G. Racah, Phys. Rev., 62 438 (1942).CrossRefGoogle Scholar
  12. 12.
    G. Racah, Phys. Rey., 63 367 (1943).CrossRefGoogle Scholar
  13. 13.
    Y. Tanabe and S. Sugano, J. Phys. Soc. Japan, 9 753 (1954).CrossRefGoogle Scholar
  14. 14.
    Y. Tanabe and s. Sugano, J. Phys. Soc. Japan, 9 766 (1954).CrossRefGoogle Scholar
  15. 15.
    J. S. Griffith, The Theory of Transition Metal Ions, Cambridge University Press, London (1964).Google Scholar
  16. 16.
    J. S. Griffith, J. Inorg. Nucl. Chem. 2 229 (1956).CrossRefGoogle Scholar
  17. 17.
    C. K. Jorgensen, Progr. Inorg. Chem., 4 73 (1962).CrossRefGoogle Scholar
  18. 18.
    R. S. Mulliken, J. Am. Chem. Soc., 74 811 (1952).CrossRefGoogle Scholar
  19. 19.
    R. S. Mulliken, J. Phys. Chem., 56 801 (1952).CrossRefGoogle Scholar
  20. 20.
    R. S. Mulliken, J. Chim. Phys., 61 20 (1964).Google Scholar
  21. 21.
    R. S. Mulliken and W. B. Person, Molecular Complexes, Wiley-Interscience, New York (1969).Google Scholar
  22. 22.
    R. Foster, Organic Charge Transfer Complexes, Academic Press, London (1969).Google Scholar
  23. 23.
    M. L. S. Dewar and A. R. Lepley, J. Am. Chem. Soc., 83 4560 (1961).CrossRefGoogle Scholar
  24. 24.
    J. N. Murrell, J. Am. Chem. Soc., 81 5037 (1959).CrossRefGoogle Scholar
  25. 25.
    J. N. Murrell, Quart. Rev. (London), 15 191 (1961).CrossRefGoogle Scholar
  26. 26.
    R. L. Flurry, JR., J. Phys. Chem. (Ithaca), 69 1927 (1965).CrossRefGoogle Scholar
  27. 27.
    S. Iwata, J. Tanaka and s. NagakuraJ. Am. Chem. Soc., 88 894 (1966).CrossRefGoogle Scholar
  28. 28.
    K. E. Shuler, J. Chem. Phys., 20 1865 (1952).CrossRefGoogle Scholar
  29. 29.
    J. C. A. Boeyens, J. Phys. Chem., 71 2969 (1967).CrossRefGoogle Scholar
  30. 30.
    A. W. Lawson, Prog. Metal Phys. 6 1 (1956).CrossRefGoogle Scholar
  31. 31.
    D. Adler in Solid State Physics, Vol. 21, edited by F. Seitz, D. Turnbull and H. Ehrenreich, Academic Press, New York (1968).Google Scholar
  32. 32.
    N. F. Mott, Proc. Phys. Soc. (London) A62 416 (1949).CrossRefGoogle Scholar
  33. 33.
    N. F. Mott, Comments on Solid State Physics II, 183 (1970).Google Scholar

Copyright information

© H. G. Drickamer and C. W. Frank 1973

Authors and Affiliations

  • H. G. Drickamer
    • 1
  • C. W. Frank
    • 1
  1. 1.School of Chemical Sciences and Materials Research LaboratoryUniversity of IllinoisUrbanaUSA

Personalised recommendations