Reactions in Aromatic Molecules and Complexes

  • H. G. Drickamer
  • C. W. Frank
Part of the Studies in Chemical Physics book series (SCP)


In Chapter 6 we saw that the energy of the optical transition (hv max) between the highest occupied and lowest empty π orbitals (ππ* transition) of aromatic molecules decreased rapidly with increasing pressure. Similarly, the optical absorptions associated with electron transfer between a donor and acceptor frequently decreased with increasing pressure. The theory of Chapter 3 indicated that a moderate decrease in this energy might be sufficient to permit thermal occupation of the excited state at high pressure, especially when configuration interaction and related effects were considered. In Chapters 6, 8, 9, and 10 we saw that for a variety of systems this thermal occupation was highly probable at high pressure, and that these electronic transitions led to new spin states and oxidation states for iron, particularly when complexed to aromatic or quasi-aromatic molecules.


Electron Spin Resonance Aromatic Molecule Olefinic Proton Cyclopropane Ring Pure Hydrocarbon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Foster, Organic Charge Transfer Complexes, Academic Press, New York (1969).Google Scholar
  2. 2.
    B. Pullman and A. Pullman, Nature (London), 199 467 (1963).CrossRefGoogle Scholar
  3. 3.
    G. A. Samara and H. G. Drickamer, J. Chem. Phys., 37 474 (1962).CrossRefGoogle Scholar
  4. 4.
    R. B. Aust, W. H. Bentley and H. G. Drickamer, J. Chem. Phys., 41 1856 (1964).CrossRefGoogle Scholar
  5. 5.
    v. C. Bastron and H. G. Drickamer, J. Solid State Chemistry, 3 550 (1971).CrossRefGoogle Scholar
  6. 6.
    R. B. Aust, G. A. Samara and H. G. Drickamer, J. Chem. Phys., 412003 1964Google Scholar
  7. 7.
    W. H. Bentley and H. G. Drickamer, J. Chem. Phs., 42 1573 (1965).CrossRefGoogle Scholar
  8. 8.
    I. L. Karle and A. V. Fratini, Act. Cryst., B26 596 (1970).CrossRefGoogle Scholar
  9. 9.
    M. I. Kuhlman and H. G. Drickamer, J. Am. Chem. Soc. Dec. (1972).Google Scholar
  10. 10.
    T. Uchida and H. Akamatu, Bull. Chem. Soc. Japan, 34 1015 (1961).CrossRefGoogle Scholar
  11. 11.
    O. Hassel and C. Romming, Quart. Rev., 16 1 (1962).CrossRefGoogle Scholar
  12. 12.
    J. A. Pople, H. J. Bernstein and w. G. Schneider, High Resolution Nuclear Magnetic Resonance, McGraw-Hill, New York (1959).Google Scholar
  13. 13.
    J. W. Emsley, J. Feeney and L. H. Sutliffe, High Resolution NMR Spectroscopy, Pergamon Press, New York (1965).Google Scholar
  14. 14.
    Y. Matsunga, J. Chem. Phys., 30 355 (1959).CrossRefGoogle Scholar
  15. 15.
    J. B. Birks, Photophysics of Aromatic Molecules, Wiley-Interscience, New York (1970).Google Scholar
  16. 16.
    A. Kira, S. Arai and M. Imamura, J. Chem. Phys., 54 4890 (1971).CrossRefGoogle Scholar
  17. 17.
    C. R. Goldschmidt and M. Ottolengh, Chem. Phys. Lett., 4 570 (1970).CrossRefGoogle Scholar
  18. 18.
    P. C. Johnson and H. W. Offen, J. Chem. Phys., 56 1938 (1972).Google Scholar

Copyright information

© H. G. Drickamer and C. W. Frank 1973

Authors and Affiliations

  • H. G. Drickamer
    • 1
  • C. W. Frank
    • 1
  1. 1.School of Chemical Sciences and Materials Research LaboratoryUniversity of IllinoisUrbanaUSA

Personalised recommendations