Resins from Grindelia: a model for renewable resources in arid environments

  • Barbara N. Timmermann
  • Joseph J. Hoffmann


As the availability of abundant, inexpensive petroleum fuels and industrial feedstocks lessens, it is important that consideration be given to renewable sources of organic compounds and fuels as alternatives to non-renewable petroleum-based substances. The actual use of bioenergy has been increasing steadily in recent years indicating that biomass may be destined to become a major source of energy in the world.


Liquid Fuel Arid Land Sesquiterpene Lactone Flower Head Glandular Hair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, R.P. and J.D. McChesney 1983. Phytochemicals for liquid fuels and petrochemical substitution: extraction procedures and screening results. Econ. Bot. 37: 207–215.CrossRefGoogle Scholar
  2. Adams, R.P., M.F. Balandrin and J.R. Martineau 1984. The showy milkweed, Asclepias sped-osa: a potential new semi-arid land crop for energy and chemicals. Biomass 4: 81–104.CrossRefGoogle Scholar
  3. Bassham, J.A. 1977. Increasing crop production through more controlled photosynthesis.Science 197: 630–638.Google Scholar
  4. Bell, A.A. 1984. Morphology, chemistry, and genetics of Gossypium adaptations to pests. In Recent advances in phytochemistry, Vol. 18, B.N. Timmermann, C. Steelink and F. Loewus (eds): 197–230. New York: Plenum Press.Google Scholar
  5. Bohlmann, F., T. Burkhardt and C. Zdero 1973. Naturally occurring acetylenes. London: Academic Press.Google Scholar
  6. Bohlmann, F., M. Grenz, A. Dahr and M. Goodman 1981. Labdane derivatives and flavones from Gutierrezia dracunculoides. Phytochem. 20: 105–107.CrossRefGoogle Scholar
  7. Bohlmann, F., M. Ahmed, N. Borthakur, M. Wallmeyer, J. Jakupovic, R.M. King and H. Robinson 1982. Diterpenes related to grindelic acid and further constituents from Grindelia species. Phytochem. 21: 167–172.CrossRefGoogle Scholar
  8. Bruun, T., L. Jackman and E. Stenhagen 1962. Grindelic and oxy-grindelic acids. Acta Chem. Scand. 16: 1675–1681.CrossRefGoogle Scholar
  9. Buchanan, R.A. and R.H. Otey 1979. Multi-use oil and hydrocarbon producing crops in adaptive systems for food, material and energy production. Bioresources Digest 1: 176–200.Google Scholar
  10. Buchanan, R.A., I.M. Cull, F.H. Otey and C.R. Russell 1978. Hydrocarbon and rubber producing crops: evaluation of 100 U.S. plant species. Econ.Bot 32: 146–153.CrossRefGoogle Scholar
  11. Burnett, W.C., S.B. Jones, T.J. Mabry and W.G. Padolina 1974. Sesquiterpene lactones: insect feeding deterrence in Vernonia. Biochem. Syst. Ecol. 2: 25–29.CrossRefGoogle Scholar
  12. Calvin, M. 1979. Petroleum plantations for fuel and materials. Bioscience 29: 533–538.CrossRefGoogle Scholar
  13. Davis, E.A., J.L. Kuester and M.O. Bagby 1984. Biomass conversion to liquid fuels–potential of some Arizona chaparral brush and tree species. Nature 307: 726–728.CrossRefGoogle Scholar
  14. Dell, B. 1975. Geographical differences in leaf resin components of Eremophila fraseri F. Muell. (Myoporaceae) Aust. J. Bot. 23: 889–897.CrossRefGoogle Scholar
  15. Dell, B. 1977. Distribution and function of resins and glandular hairs in Western Australian plants. J. Roy. Soc. W. Austr. 59: 119–123.Google Scholar
  16. Dell, B. and A.J. McComb 1974. Resin production and glandular hairs in Beyeria viscosa (Labill.) Miq. (Euphorbiaceae). Aust. J. Bot. 22: 195–210.CrossRefGoogle Scholar
  17. Dell, B. and A.J. McComb 1975. Glandular hairs, resin production, and habitat of Newcastelia viscida E. Pritzel (Dicrastylidaceae). Aust. J. Bot. 23: 373–390.Google Scholar
  18. Dunford, M.P. 1964. A cytogenetic analysis of certain polyploids in Grindelia (Compositae). Am. J. Bot. 51: 41–56.CrossRefGoogle Scholar
  19. Ehleringer, J., O. Bjorkman and H.A. Money 1976. Leaf pubescence: effects on absorptance and photosynthesis in a desert shrub. Science 192: 376–377.PubMedCrossRefGoogle Scholar
  20. Eiliger, C.A., D.F. Zinkel, G.B. Chan and A.C. Waiss 1976. Diterpene acids as larval growth inhibitors. Experientia 32: 1364–1366.CrossRefGoogle Scholar
  21. Forliard, N. 1969. Contribution a l’etude de la composition chimique de l’herbe de Grindelia. J. Pharm. Belg. 24: 397–414.Google Scholar
  22. Guerreiro, E., J. Kavka, J. Saad, M. Oriental and O. Giordana 1981. Acidos diterpenicos en Grindelia pulchella y G. chiloensis. Revista Latinoamericana Quimica 12: 77–81.Google Scholar
  23. Haag, W.O., P.G. Rodewald and P.B. Weisz 1980. Catalytic production of aromatics and olefins from plant materials. Symposium on alternative feedstocks for petrochemicals. American Chemical Society Meeting, Las Vegas, Nevada, August 24–25 (mimeo.).Google Scholar
  24. Hannus, K. 1976. Lipophilic extractives in technical foliage of pine (Pinus sylvestris). In Applied Polymer Symposia No. 28, T.E. Timell (ed.): 485–501. New York: J. Wiley.Google Scholar
  25. Hoffmann, J.J. 1983. Arid lands plants as feedstocks for fuels and chemicals. Critical reviews in plant science 1: 95–116.CrossRefGoogle Scholar
  26. Hoffmann, J.J. and S.P. McLaughlin (in press). Grindelia camporum:a potential cash crop for the arid Southwest. Desert Plants.Google Scholar
  27. Hoffmann, J.J., B.K. Kingsolver, S.P. McLaughlin and B.N. Timmermann 1984. Production of resins by arid-adapted Astereae. In Recent advances in phytochemistry, Vol. 18, B.N. Timmermann, C. Steelink and F. Loewus (eds): 251–272. New York: Plenum Press.Google Scholar
  28. Hoffmann, J.J., S.P. McLaughlin, S.D. Jolad, K,H. Schram, M.S. Tempesta and R.B. Bates 1982. Constituents of Chrysothamnus paniculatus (Compositae) 1: Chrysothame, a new diterpene, and 6-oxygrindelic acid.J.Org. Chem. 47: 1725–1727.Google Scholar
  29. Hohmann, V.B. 1967. Botanisch-varenkundliche untersuchungen inner-half der gattung Grindelia. Planta medica 15: 255–263.CrossRefGoogle Scholar
  30. Kingsolver, B.K. 1982. Euphorbia lathyris reconsidered: its potential as an energy crop for arid lands. Biomass 2: 281–298.Google Scholar
  31. Lipinsky, E.S. 1981. Chemicals from biomass: petrochemical substitution options. Science 212: 1465–1471.PubMedCrossRefGoogle Scholar
  32. Lipinsky, E.S. and S. Kresovich 1979. Fuels from biomass systems for arid lands environments. In Arid land plant resources, J.R. Goodin and D.K. Northington (eds): 294–306. Lubbock: Texas Tech University Press.Google Scholar
  33. Mabry, T.J. and J.E. Gill 1979. Sesquiterpene lactones and other terpenoids. In Herbivores: their interaction with secondary plant metabolites, G.A. Rosenthal and D.H. Janzen (eds). 501–537. New York: Academic Press.Google Scholar
  34. Mangoni, L. and M. Belardini 1962. Constituents of Grindelia robusta. Gaz. Chimica Ital. 92 983–994.Google Scholar
  35. McLaughlin, S.P. and J.J. Hoffmann 1982. Survey of biocrude-producing plants from the southwest. Econ. Bot. 36: 323–339.CrossRefGoogle Scholar
  36. McNay, R.E. 1964. Emulsion polymerization. US Patent 3 157 608.Google Scholar
  37. McNay, R.E. and W.R. Peterson 1964. Treatment of synthetic rubber. US Patent 3 157 609.Google Scholar
  38. McNay, R.E. and W.R. Peterson 1965. Method of sizing cellulose fibers with resinous material from the plant Grindelia and products thereof. US Patent 3 186 901.Google Scholar
  39. Metcalfe, C.R. and L. Chalk 1979. Anatomy of the Dicotyledons. Vol. 2. Oxford: Clarendon Press.Google Scholar
  40. Palsson, B.O., S. Fathi-Afshar, D.F. Rudd and E.N. Lightfoot 1981. Biomass as source of chemical feedstocks: an economic evaluation. Science 213: 513–517.PubMedCrossRefGoogle Scholar
  41. Pearman, G.I. 1966. The reflection of visible radiation from leaves of some western Australian species. Austr. J. Biol. Sci. 19: 97–103.Google Scholar
  42. Pinkas, M., N. Didry, M. Torck, L. Bezanger and J.C. Cazin 1978. Recherches sur ies polyphenols de quelques especes de Grindelia. Ann. Pharm. Françaises 36: 97–104.Google Scholar
  43. Princen, L.A. 1982. Alternate industrial feedstocks from agriculture. Econ. Bot. 36: 302–312.CrossRefGoogle Scholar
  44. Rose, A. 1980. Grindelane terpenoids from Chrysothamnus nauseosus. Phytochem. 19: 2689–2693.CrossRefGoogle Scholar
  45. Rose, A., K. Jones, W. Haddon and D. Dreyer 1981. Grindelane diterpenoid acids from Grindelia humilis: feeding deterrency of diterpene acids toward aphids. Phytochem. 20: 2249–2253.CrossRefGoogle Scholar
  46. Ruiz, S.O., E. Guerreiro and O.S. Giordano 1981. Flavonoides en tres especies del genero Grindelia. Anales Asoc. Quimica Argentina 69: 293–295.Google Scholar
  47. Sakakibara, M., D. DiFeo, N. Nakatani, B.N. Timmermann and T.J. Mabry 1976. Flavonoid methyl ethers on the external leaf surface of Larrea tridentata and L. divaricata. Phytochem. 15: 727–731.CrossRefGoogle Scholar
  48. Slatyer, R.O. 1964. Efficiency of water utilization by arid zone vegetation. Annals Arid Zone 3: 1–12.Google Scholar
  49. Timmermann, B.N., J.J. Hoffmann, S.D. Jolad, K.H. Schram, R.E. Klenck and R.B. Bates 1982. Constituents of Chrysothamnus paniculatus (Compositae) 2: Chrysolic acid, a new labdane-derived diterpene with an aromatic B-ring, J. Org. Chem. 47: 4114–4116.CrossRefGoogle Scholar
  50. Timmermann, B.N., D.J. Luzbetak, J.J. Hoffmann, S.D. Jolad, K.H. Schram, R.B. Bates and R.E. Klenck 1983. Grindelane diterpenoids from Grindelia camporum and Chrysothamnus paniculatus. Phytochem. 22: 523–525.Google Scholar
  51. Waddell, T.G., C.B. Osborne, R. Collison, M.J. Levine, M.C. Cross, J.V. Silverton, H.M. Fales and E.A. Sokoloski 1983. Erigerol, a new labdane diterpene from Erigeron philadelphicus. J. Org. Chem. 48: 4450–4453.CrossRefGoogle Scholar
  52. Waggonner, P.E. 1966. Decreasing transpiration and the effect upon growth. In Plant environment and efficient water use, W.H. Pierre, D. Kirkham, J. Pesek and R. Shaw (eds): 49–72.Google Scholar
  53. Madison, Wisconsin: American Society of Agronomy and Soil Science Society of America. Wagner, H., M. Iyengar, O. Seligmann, L. Horhammer and W. Herz 1972. Chrysoeriol-7-glucuronoid in Grindelia squarrosa. Phytochem. 11: 23–50.Google Scholar
  54. Wang, S. and J.B. Huffman 1981. Botanochemicals: supplements to petrochemicals. Econ. Bot. 35: 369–382.CrossRefGoogle Scholar
  55. Weisz, P.B., W.O. Haag and P.G. Rodewald, 1979. Catalytic production of aromatics and olefins from plant materials,presented at 2nd Chemical Congress of American Chemical Society, Las Vegas, Nevade, August 26, 1980 (mimeo.).Google Scholar
  56. Zinkel, D.F. 1975. Naval stores: silvichemicals from pine. In Applied polymer symposia No. 28, T.E. Timell (ed,): 309–327. New York: J. Wiley.Google Scholar
  57. Zinkel, D.F. 1981. Turpentine, rosin and fatty acids from conifers, In Organic chemicals from biomass, I.S. Goldstein (ed.): 163–187. Boca Raton, Florida: CRC Press.Google Scholar

Copyright information

© Royal Botanic Gardens, Kew 1985

Authors and Affiliations

  • Barbara N. Timmermann
    • 1
  • Joseph J. Hoffmann
    • 1
  1. 1.Office of Arid Lands Studies, College of AgricultureUniversity of Arizona, Bioresources Research FacilityTucsonUSA

Personalised recommendations