Skip to main content

Biochemical Factors Associated with the Sleep State

  • Chapter
The Neural Basis of Behavior

Abstract

The questions of why sleep is required by higher animals, and of what instigates sleep, are hardly novel. Though the answers must ultimately be couched largely in chemical terms, biochemical studies of sleep are not very numerous. Recently, however, the tempo of research has quickened and two reviews have appeared within the past three years that offer a glimpse both of the more historical aspects of the field and of recent progress (Guiditta, 1977; Karnovsky and Reich, 1977). Though these reviews were written completely independently of each other, by authors with entirely different fundamental interests, they cover virtually the same ground, and even offer several identical examples from the literature. This one might take as an indication of how small is the number of biochemical laboratories that are engaged in research on sleep.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anchors, J.M., Haggerty, D.F., and Karnovsky, M.L. Cerebral glucose-6-phosphatase and the movement of 2-deoxy-D-glucose across cell membranes. J. Biol. Chern. 252, 7035–7041 (1977).

    CAS  Google Scholar 

  • Anchors, J.M., and Karnovsky, M.L. Purification of cerebral glucose-6-phosphatase. An enzyme involved in sleep. J. Biol. Chem. 250, 6408–6416 (1975).

    PubMed  CAS  Google Scholar 

  • Arion, WJ., Wallin, B.K., Carlson, P.W., and Lange, AJ. The Specificity of glucose-6-phosphatase of intact liver microsomes. J. Biol. Chem. 247, 2558–2565 (1972).

    PubMed  CAS  Google Scholar 

  • Cabantchik, Z.I., Knauf, P.A., and Rothstein, A. The anion transport system of the red blood cell: The role of membrane protein evaluated by the use of probes. Biochem. Biophys. Acta 515, 239–302 (1978).

    PubMed  CAS  Google Scholar 

  • Cocks, J.A. Change in the concentration of lactic acid in the rat and hamster brain during natural sleep. Nature 215, 1399–1400 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Cohen, H.B., and Dement, W.C. Sleep: changes in threshold to electroconvulsive shock in rats after deprivation of “paradoxical phase.” Science 150, 1318–1319 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Feldman, F., and Butler, L.G. Protein bound phosphoryl histidine: A probable intermediate in the microsomal glucose-6-phosphatase/inorganic pyrophosphatase reaction. Biochem. Biophys. Acta 268, 698–710 (1972).

    PubMed  CAS  Google Scholar 

  • Fencl, V., Koski, G., and Pappenheimer, J.R. Factors in cerebrospinal fluid from goats that affect sleep and activity in rats. J. Physiol. 216, 565–589 (1971).

    PubMed  CAS  Google Scholar 

  • Giuditta, A. The biochemistry of sleep, in Biochemical Correlates of Brain Structure and Function. A.N. Davison, ed. Academic Press, London (1977), pp. 293–337.

    Google Scholar 

  • Hawkins, R.A., and Miller, A.L. Loss of radioactive 2-deoxy-D-glucose-6-phosphate from brains of conscious rats: Implications for quantitative auto radiographic determination of regional glucose utilization. Neuroscience 3, 251–258 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Jouvet, M. The role of monoamines and acetyl-choline-containing neurones in the regulation of the sleep-waking cycle. Ergeb. Physiol. 64, 166–307 (1972).

    PubMed  CAS  Google Scholar 

  • Jouvet, D., Vimont, P., Delorme, F., and Jouvet, M. Etude de la privation selective de la phase paradoxale de sommeil chez le chat. C. R. Soc. Biol. (Paris) 158, 456–759 (1964).

    Google Scholar 

  • Karadzik, V., and Mrsulja, B. Deprivation of paradoxical sleep and brain glycogen. J. Neurochem. 16,29–34 (1969).

    Article  Google Scholar 

  • Karnovsky, M.L., and Reich, P. Biochemistry of sleep, in Advances in Neurochemistry. B.W. Agranoff and M.H. Aprison, eds. Plenum Press, New York (1977), Vol. 2, pp. 213–275.

    Google Scholar 

  • Katz, J., and Rognstad, R. Futile cycles in the metabolism of glucose, in Current Topics in Cellular Regulation. B.L. Horecker and E.R. Stadtman, eds. Academic Press, New York (1976), Vol. 10, pp. 237–289.

    Google Scholar 

  • Kennedy, e., Des Rosiers, M.H., Jehle, J.W., Reivich, M., Sharpe, F., and Sokoloff, L. Mapping of functional neuronal pathways by autoradiographic survey of local metabolic rate with 14C-deoxyglucose. Science 187, 850–853 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Krueger, J.M., Pappenheimer, J.R., and Karnovsky, M.L. Sleep-promoting factors: purification and properties. Proc. Nat. Acad. Sci. 75, 5235–5238 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Legendre, R., and Pieron, H. Des resultats histo-physiologiques de l’injection intra-occipito atlantodienne des liquide insomniques. C. R. Soc. Biol. (Paris) 68, 1108–1109 (1910).

    Google Scholar 

  • Legendre, R., and Pieron, H. Recherches sur le besoin de sommeil couse cutif a une veille prolongee. Z. AUg. Physiol. 14,235–262 (1913).

    Google Scholar 

  • Mendelson, W., Guthrie, R.D., Guynn, R., Harris, R.L., and Wyatt, RJ. Rapid eye movement (REM) sleep deprivation, stress, and intermediary metabolism. J. Neurochem. 22, 1157–1159 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Monnier, M., Hatt, A.M., Cueni, L.B., and Schoenenberger, R.A. Humoral transmission of sleep VI. Purification and assessment of a hypnogenic fraction of “sleep dialysate” (factor delta). Pjlugers Arch. 331, 257–265 (1972).

    Article  CAS  Google Scholar 

  • Monnier, M., and Hosli, L. Dialysis of sleep and waking factors in blood of the rabbit. Science 146, 796–798 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Monnier, M., and Schoenenberger, G.A. Erzeugung, Isolierung und Charakterisierung eines physiologische Schlaffaktors “Delta.” Schweiz. Med. Wochenschr. 103, 1733–1743 (1973).

    PubMed  CAS  Google Scholar 

  • Nagasaki, H., Iriki, M., Inoue, S., and Uchizono, K. The presence of a sleep-promoting material in the brain of sleep-deprived rats. Froc. Japan. A cad. 50, 241–246 (1974).

    Google Scholar 

  • Newsholme, E., and Crabtree, B.: Substrate cycles in the control of energy metabolism in the intact animal, in Symposium Al Regulatory Mechanisms of Carbohydrate Metabolism. V. Esmann, ed. Federation of European Biochemical Societies, II th meeting, Copenhagen, Pergamon Press, New York (1978), Vol. 42, pp. 285–295.

    Google Scholar 

  • Nilsson, O.S., Arion, W.J., DePierre, J.W., Dallner, G., and Ernster, L. Evidence for the involvement of a glucose-6-phosphate carrier in microsomal glucose-6-phosphatase activity. Eur. J. Biochem. 82, 627–638 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Nordlie, R.C. Glucose-6-phosphatase, hydrolytic and synthetic activities, in The Enzymes P.O. Boyer, ed. Academic Press, New York (1971), Vol. 4, pp. 543–605.

    Google Scholar 

  • Nordlie, R.C. Metabolic regulation by multifunctional glucose-6-phosphatase, in Current Topics in Cellular Regulation. B.L. Horecker and E.R. Stadtman, eds. Academic Press, New York (1974), Vol. 8, pp. 33–117.

    Google Scholar 

  • Pappenheimer, J.R., Koski, G., Fencl, V., Karnovsky, M.L., and Krueger, J. Extraction of sleep-promoting Factor S. from cerebrospinal fluid and from brains of sleep-deprived animals. J. Neurophysiol. 38, 1299–1311 (1975).

    PubMed  CAS  Google Scholar 

  • Passonneau, J.V., and Lauderdale, V.R. A comparison of three methods of glycogen measurement in tissues. Anal. Biochem. 60, 405–412 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Pieron, H. Le probleme physiologique du sommeil. Masson, Paris (1913).

    Google Scholar 

  • Reich, P., Driver, J.K., and Karnovsky, M.L. Sleep: effects on incorporation of inorganic phosphate into brain fractions. Science 157, 336–338 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Reich, P., Geyer, S.J., and Karnovsky, M.L. Metabolism of brain during sleep and wakefulness. J. Neurochem. 19, 487–497 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Reich, P., Geyer, S.J., Steinbaum, L., Anchors, J.M., and Karnovsky, M.L. Incorporation of phosphate into rat brain during sleep and wakefulness. J. Neurochem. 20, 1195–1205 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Reivich, M., Isaacs, G., Evarts, E., and Kety, S.S. The effect of slow-wave sleep and REM sleep on regional cerebral blood flow in cats. J. Neurochem. 15, 301–306 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Richter, D., and Dawson, R.M.C. Brain metabolism in emotional excitement and in sleep. Am. J. Physiol. 154, 73–79 (1948).

    PubMed  CAS  Google Scholar 

  • Roldan, E., and Weiss, T. Neural mechanisms underlying sleep cycle in rodents. Bol. Inst. Estud. Med. Biol. Mex. 24, 467–483 (1963).

    Google Scholar 

  • Schnedorf, J.G., and Ivy, A.C. An examination of the hypnotoxin theory of sleep. Am. J. Physiol. 125, 491–505 (1939).

    Google Scholar 

  • Schoenenberger, G.A., Maier, P.F., Tobler, H.J., Wilson, K., and Monnier, M. The delta EEG (sleep)-inducing peptide (DSIP) XI. Amino acid analysis, sequence, synthesis and activity of the nonapeptide. Pflugers Arch. 376, 119–129 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Shimizu, H., Tabushi, K., Hishikawa, Y., Kakimoto, Y., and Kaneko, Z. Concentrations of lactic acid in rat brain during natural sleep. Nature 212,936–937 (1966).

    Article  CAS  Google Scholar 

  • Sokoloff, L., Reivich, M., Kennedy, C., Des Rosiers, M.H., Patlak, C.S., Pettigrew, K.D., Sakuroda, O., and Shinohara, M. The 14C-deoxyglucose method for the measurement of local cerebral glucose utilization: Theory, procedure and normal values in the conscious and anesthetized albino rat. J. Neurochem. 28,897–916 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Stephens, H.R., and Sandborn, E.B. Cytochemical localization of glucose-6-phosphatase activity in the central nervous system of the rat. Brain Res. 113, 127–146 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Steriade, M., and Hobson, J.A. Neuronal activity during the sleep-waking cycle. Prog. Neurobiol. 6, 155–376 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Van den Noort, S., and Brine, K. Effect of sleep on brain labile phosphates and metabolic rate. Am. J. Physiol. 218, 1434–1439 (1970).

    PubMed  Google Scholar 

  • Veech, R.L., and Hawkins, R.A. Brain blowing: a technique for in vivo study of brain metabolism, in Research Methods in Neurochemistry. N. Marks and R. Rodnight, eds. Plenum Press, New York-London (1974), Vol. 2, pp. 171–182.

    Google Scholar 

  • Zakim, D., and Vessy, P.A. Techniques for the characterization of UDP-glucuronyltransferase, glucose-6-phosphate, and other tightly bound microsomal enzymes, in Methods in Biochemical Analysis. D. Glick, ed. John Wiley and Sons, New York (1973), Vol. 21, pp. 1–37.

    Chapter  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Spectrum Publications, Inc.

About this chapter

Cite this chapter

Karnovsky, M.L. (1982). Biochemical Factors Associated with the Sleep State. In: Beckman, A.L. (eds) The Neural Basis of Behavior. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-6302-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-6302-6_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-6304-0

  • Online ISBN: 978-94-011-6302-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics