Renal viability testing during preservation by metabolic parameters

  • J. H. Fischer
  • I. Hansen-Schmidt
  • D. Kulus
  • W. Isselhard


Many attempts have been made to find a method for renal viability testing during the preservation period. Most of the techniques have turned out to be of rather limited value. Because of the central importance of the energy metabolism for the survival of cells in unphysiological situations, the substances of the energy-distributing system (in the kidney, mainly the adenine nucleotides) as well as the metabolites of the glycolytic pathway (the only way for energy production in anaerobiosis) should be excellent parameters for viability1–4. Our experience includes experiments on several species (dogs, rats and guinea pigs) as well as different preservation techniques (normothermic ischaemia, hypothermic ischaemia, continuous hypothermic perfusion or retrograde oxygen persufflation (ROP)5–8).


Adenine Nucleotide Organ Preservation Continuous Perfusion Preservation Period Normothermic Ischaemia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Caiman, K.C. (1974). The prediction of organ viability. I. An hypothesis. Cryobiology, 11, 6 Google Scholar
  2. 2.
    Collins, G.M., Taft, P., Green, R.D., Ruprecht, R. and Halasz, N.A. (1977). Adenine nucleotide levels in preserved and ischemically injured canine kidneys. World J. Surg., 1, 237CrossRefGoogle Scholar
  3. 3.
    Plachta, N., Rowinski, W., Ryffa, T., Ruka, M. and Stepkowski, S. (1978). Correlation of in vitro viability assays with the life supporting function of the ischemically damaged kidney. Acta Med. Pol. Vars., 19, 35Google Scholar
  4. 4.
    Southard, J.H., Senzig, K.A., Hoffmann, R.M. and Beizer, F.O. (1977). Energy metabolism in kidneys stored by simple hypothermia. Transplant. Proc., 9, 1535PubMedGoogle Scholar
  5. 5.
    Fischer, J.H., Czerniak, A., Hauer, U. and Isselhard, W. (1978). A new simple method for optimal storage of ischemically damaged kidneys. Transplantation, 25, 43PubMedCrossRefGoogle Scholar
  6. 6.
    Fischer, J.H., Czerniak, A., Kulus, D., Hansen-Schmidt, I. and Isselhard, W. (1979). Persufflations-Konservierung von Nieren in intrazellulären Lösungen über 48 und 72 Stunden. In Schellerer, W. and Schildberg, F.W. (eds.) Chirurgie aktuell. Vol. 5. Aktuelles aus der Abdominal und Unfallchirurgie, p. 257Google Scholar
  7. 7.
    Fischer, J.H., Armbruster, D., Grebe, W., Czerniak, A. and Isselhard, W. (1980). Effects of differences in substrate supply on the energy metabolism of hypothermically perfused canine kidneys. Cryobiology, 17, 135PubMedCrossRefGoogle Scholar
  8. 8.
    Fischer, J.H., Kulus, D., Hansen-Schmidt, I. and Isselhard, W. (1981). Adenine nucleotide levels of canine kidneys during hypothermic aerobic or anaerobic storage in Collins’ solution. Eur. Surg. Res., 13, 181CrossRefGoogle Scholar
  9. 9.
    Wollenberger, A., Ristau, O. and Schoffa, G. (1960). Eine einfache Technik der extrem schnellen Abkühlung grösserer Gewebsstücke. Pflügers Arch Ges. Physiol., 270, 399CrossRefGoogle Scholar
  10. 10.
    Atkinson, D.E. (1968). The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers. Biochemistry N. Y., 7, 4030CrossRefGoogle Scholar
  11. 11.
    Fischer, J.H., Marsen, S., Fabri, P. and Isselhard, W. (1979). Renal energy metabolism during hypothermic storage - comparative experiments on dogs, rats and guinea pigs. Eur. Surg. Res., 11 (suppl. 2), 85CrossRefGoogle Scholar

Copyright information

© MTP Press Limited 1982

Authors and Affiliations

  • J. H. Fischer
  • I. Hansen-Schmidt
  • D. Kulus
  • W. Isselhard

There are no affiliations available

Personalised recommendations