Advertisement

Study of human kidneys prior to transplantation by phosphorus nuclear magnetic resonance

  • L. Chan
  • M. E. French
  • D. G. Gadian
  • P. J. Morris
  • G. K. Radda
  • P. J. Bore
  • B. D. Ross
  • P. Styles

Abstract

The possible applications of phosphorus nuclear magnetic resonance (NMR) to medicine are only just beginning to be explored1. It is a noninvasive method of analysing many aspects of energy metabolism of living intact cells because it can be used to detect adenosine triphosphate and diphosphate (ATP and ADP), phosphorylated sugar (sugar P) including adenosine monophosphate (AMP) and inorganic phosphate (Pi)2,3. Furthermore, the intracellular pH can also be determined simultaneously by measuring the frequency of the Pi peak. This technique has been used to determine adenine nucleotide content and intrarenal pH in kidneys from experimental animals, and has contributed to an understanding of the effects of ischaemia and preservation for transplantation4,5. With the development of a new wide-bore (20 cm) magnet (Oxford Research System, TMR-32), it is now possible to examine whole human kidneys in vitro and human limbs in vivo.

Keywords

Nuclear Magnetic Resonance Nuclear Magnetic Resonance Spectrum Human Kidney Nuclear Magnetic Resonance Spectroscopy Nuclear Magnetic Resonance Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gadian, D.G. (1982). NMR and its Applications to Living Systems. ( Oxford: Oxford University Press )Google Scholar
  2. 2.
    Gadian, D. G., Radda, G. K., Richards, R. E. and Seeley, P. J. (1979). 31P NMR in living tissue: the road from a promising to an important tool in biology. In Shulman, R. G. (ed.), Biological Applications of Nuclear Magnetic Resonance, pp. 463–535. ( New York: Academic Press )Google Scholar
  3. 3.
    Gadian, D.G. and Radda, G.K. (1981). NMR studies of tissue metabolism. Ann. Rev. Biochem., 50, 69PubMedCrossRefGoogle Scholar
  4. 4.
    Sehr, P.A., Bore, P. J., Papatheofanis, J. and Radda, G.K. (1979). Br. J. Exp. Pathol., 60, 632PubMedGoogle Scholar
  5. 5.
    Bore, P. J., Sehr, P. A., Chan, L., Thulborn, K. R., Ross, B. D. and Radda, G. K. (1981). Transplant. Proc., 13, 707PubMedGoogle Scholar
  6. 6.
    Chan, L., French, M.E., Gadian, D.G. and Radda, G.K. (1982). Phosphorus magnetic resonance study of renal cell carcinoma. (In preparation)Google Scholar
  7. 7.
    Collins, G.M., Taft, P., Green, R.D., Rurprecht, R. and Halasz, N. A. (1977). World J. Surg., 1, 237CrossRefGoogle Scholar
  8. 8.
    Southard, J.H., Benzig, K.A., Hoffman, R.M. and Beizer, F.O. (1977). Transplant. Proc., 9, 1535PubMedGoogle Scholar

Copyright information

© MTP Press Limited 1982

Authors and Affiliations

  • L. Chan
  • M. E. French
  • D. G. Gadian
  • P. J. Morris
  • G. K. Radda
  • P. J. Bore
  • B. D. Ross
  • P. Styles

There are no affiliations available

Personalised recommendations