Energetics and mitochondria

  • H. Feinberg


A recent editorial noted that kidney preservation techniques have changed little for over a decade1. Storage beyond a 7-10-day period is not yet possible. In part, this was attributed to ‘lack of understanding of the metabolic requirements of the ex vivo hypothermic-perfused organ, particularly as it relates to function and pathways that are altered by hypothermia’. The same comments are applicable to liver and heart preservation; indeed these organs cannot be successfully stored for more than 24 h.


Adenine Nucleotide Proton Gradient Citric Acid Cycle Organ Preservation Adenine Nucleotide Translocase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beizer, F.O. and Southard, J.H. (1980). The future of kidney preservation. Transplantation, 30, 161CrossRefGoogle Scholar
  2. 2.
    Feinberg, H., Gerola, A. and Katz, L.N. (1958). Effect of hypoxia on cardiac oxygen consumption and coronary flow. Am. J. Physiol., 195, 593PubMedGoogle Scholar
  3. 3.
    Hansford, R.G. (1980). Control of mitochondrial substrate oxidation. Current topics of Bioenergetics, 10, 217Google Scholar
  4. 4.
    Weinstein, S.W. and Szyjewicz, J. (1974). Individual nephron function and renal oxygen consumption in the rat. Am. J. Physiol., 227, 171PubMedGoogle Scholar
  5. 5.
    Chance, B. and Williams, G.R. (1955). Respiratory enzymes in oxidative phosphorylation. III. The steady state. Biol. Chem., 217, 409Google Scholar
  6. 6.
    Boyer, P.D., Chance, B., Ernster, L., Mitchell, P., Racker, E. and Slater, E.C. (1977). Oxidative phosphorylation and photophosphorylation. Annu. Rev. Biochem., 46, 955PubMedCrossRefGoogle Scholar
  7. 7.
    Mitchell, P. (1979). Compartmentation and communication in living systems. Ligand conduction: a general catalytic principle in chemical, osmotic and chemiosmotic reaction systems. Eur. J. Biochem., 95, 1PubMedCrossRefGoogle Scholar
  8. 8.
    Williamson, J.R. (1979). Mitochondrial function in the heart. Annu. Rev. Physiol., 41, 485PubMedCrossRefGoogle Scholar
  9. 9.
    Klingenberg, M. (1980). The ADP-ATP translocation in mitochondria, a membrane potential controlled transport. J. Membrane Biol., 56, 97CrossRefGoogle Scholar
  10. 10.
    Coty, W.A. and Pedersen, P.L. (1975). Phosphate transport in rat liver mitochondria. Mol. Cell. Biochem., 9, 109PubMedCrossRefGoogle Scholar
  11. 11.
    Erecinska, M., Wilson, D.F. and Nishiki, K. (1978). Homeostatic regulation of cellular energy metabolism: Experimental characterization in vivo and fit to a model. Am. J. Physiol.: Cell Physiol., 3, C82Google Scholar
  12. 12.
    Vignais, P.V. and Laugquin, G.L.M. (1979). Mitochondrial adenine nucelotide transport and its role in the economy of the cell. Trends Biochem. Sei., April, 90Google Scholar
  13. 13.
    Lemasters, J.J. and Sowers, A.E. (1979). Phosphate-dependence and atractyloside inhibition of mitochondrial oxidative phosphorylation. The ADP-ATP carrier is rate- limiting. J. Biol. Chem., 254, 1248PubMedGoogle Scholar
  14. 14.
    Davis, E.J. and Lumeng, L. (1975). Relationships between the phosphorylation potentials generated by liver mitochondria and respiratory state under conditions of ADP control. J. Biol. Chem., 250, 2275Google Scholar
  15. 15.
    Pfaff, E., Heidt, H. W. and Klingenberg, M. (1969). Adenine nucleotide translocation of mitochondria, kinetics of the adenine nucleotide exchange. Eur. J. Biochem., 10, 484PubMedCrossRefGoogle Scholar
  16. 16.
    Carafoli, E. (1980). Regulation of aerobic metabolism in muscle. In Cerretelli, P. and Whipp, B.J. (eds) Exercise Bioenergetics and Gas Exchange, pp. 3–12. ( New York: Elsevier/North Holland Biomedical Press )Google Scholar
  17. 17.
    Williamson, J.R., Safer, B., La Noue, K.F., Smith, C.M. and Walajtys, E. (1973). Mitochondrial-cytosolic interactions in cardiac tissue: Role of the malate-aspartate cycle in the removal of glycolytic NADH from the cytosol. Symp. Soc. Expt. Biol., 27, 241Google Scholar
  18. 18.
    Scarpa, A. (1979). Transport across mitochondrial membranes. In P.C. Tosteson (ed.), Transport across Single Biological Membranes, Ch. 7, pp. 263–355. ( New York: Springer-Verlag )Google Scholar
  19. 19.
    Fiskum, G. and Lehninger, A.L. (1980). The mechanisms and regulation of mitochondrial Ca2+ transport. Fed. Proc., 39, 2432PubMedGoogle Scholar
  20. 20.
    Rasmussen, H., Clayberger, C. and Gustin, M.C. (1979). The messenger function of calcium in cell activation. Symp. Soc. Expt. Biol., 33, 161Google Scholar
  21. 21.
    Jacobus, W.E., Tiozzo, R., Lugli, G., Lehninger, A. L. and Carafoli, E. (1975). Aspects of energy-linked calcium accumulation by rat heart mitochondria. J. Biol. Chem., 250, 7803Google Scholar
  22. 22.
    Frick, G. P. and Lowenstein, J. M. (1976). Studies of 5’-nucleotidase in the perfused rat heart. J. Biol. Chem., 251, 6372PubMedGoogle Scholar
  23. 23.
    Murray, A. W. (1971). The biological significance of purine salvage. Annu. Rev. Biochem., 40, 811PubMedCrossRefGoogle Scholar
  24. 24.
    Liu, M. S. and Feinberg, H. (1971). Incorporation of [8-14C]adenosine and [8-14C]inosine into adenine nucleotides of perfused rabbit heart. Am. J. Physiol., 220, 1242PubMedGoogle Scholar
  25. 25.
    Blaustein, M.P. (1974). The interrelationship between sodium and calcium fluxes across cell membranes. Rev. Physiol. Biochem. Pharmacol., 70, 33PubMedCrossRefGoogle Scholar
  26. 26.
    Post, R.L., Merritt, C.R., Kinsolving, C.R. and Albright, C.D. (I960). Membrane adenosine triphosphatase as a participant in the active transport of sodium and potassium in the human erythrocyte. Biol. Chem., 235, 1796Google Scholar
  27. 27.
    Krenitsky, T. A. (1969). Tissue distribution of purine and phosphoribosyl transferases in the Rhesus monkey. Biochim. Biophys. Acta., 179, 506PubMedGoogle Scholar

Copyright information

© MTP Press Limited 1982

Authors and Affiliations

  • H. Feinberg

There are no affiliations available

Personalised recommendations