Skip to main content

Molecular bases of the metabolic excitability of phagocytes

  • Chapter
Inborn Errors of Immunity and Phagocytosis

Abstract

A number of oxidative reactions, lethal to many bacteria, fungi, certain viruses and mycoplasmas, are activated by phagocytosis in polymorphonuclear leukocytes (PMNL) and macrophages1–4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Klebanoff, S. J. (1975). Antimicrobial mechanisms in neutrophilic polymorphonuclear leukocytes. Semin. Hematol., 12, 117

    PubMed  CAS  Google Scholar 

  2. Sbarra, A. J., Paul, B. B., Jacobs, A. A., Strauss, R. R. and Mitchell, G. W. Jr. (1972). Role of the phagocyte in host-parasite interactions. XXXVIII. Metabolic activities of the phagocyte as related to antimicrobial action. J. Reticuloendothel. Soc., 12, 109

    PubMed  CAS  Google Scholar 

  3. Paul, B. B., Strauss, R. R., Selvaraj, R. J. and Sbarra, A. J. (1973). Peroxidase mediated antimicrobial activities of alveolar macrophage granules. Science, 181, 849

    Article  PubMed  CAS  Google Scholar 

  4. Johnston, R. B. Jr., Keele, B. B. Jr., Misra, H. P., Lehmeyer, J. E., Webb, L. S., Baehner, R. L. and Rajagopalan, K. V. (1975). The role of superoxide anion generation in phagocytic bactericidal activity. Studies with normal and chronic granulomatous disease leucocytes. J. Clin. Invest., 55, 1357

    Article  PubMed  CAS  Google Scholar 

  5. Iyer, G. Y. N., Islam, D. M. F. and Quastel, J. H. (1961). Biochemical aspects of phagocytosis, Nature (London), 192, 535

    Article  CAS  Google Scholar 

  6. Paul, B. and Sbarra, A. J. (1968). The role of the phagocyte in host-parasite interactions. XIII. The direct quantitative estimation of H2O2 in phago- cytizing cells. Biochim. Biophys. Acta, 156, 168

    Article  PubMed  CAS  Google Scholar 

  7. Zatti, M., Rossi, F. and Patriarca, P. (1968). The H2O2 production by polymorphonuclear leucocytes during phagocytosis. Experientia., 24, 669

    Article  PubMed  CAS  Google Scholar 

  8. Gee, J. B. L., Vassallo, C. L., Bell, P., Kaskin, J., Basford, R. E. and Field, J. (1970). Catalase-dependent peroxidative metabolism in the alveolar macrophage during phagocytosis. J. Clin. Invest., 49, 1280

    Article  PubMed  CAS  Google Scholar 

  9. Romeo, D., Zabucchi, G., Marzi, T. and Rossi, F. (1973). Kinetic and enzymatic features of metabolism stimulation of alveolar and peritoneal macrophages challenged with bacteria. Exp. Cell. Res., 78, 423

    Article  PubMed  CAS  Google Scholar 

  10. Babior, B. M., Kipnes, R. S. and Curnutte, J. T. (1973). Biological defense mechanisms. The production by leukocytes of superoxide, a potent bactericidal agent. J. Clin. Invest., 52, 741

    Article  PubMed  CAS  Google Scholar 

  11. Drath, D. B. and Karnovsky, M. L. (1975). Superoxide production by phagocytic leukocytes. J. Exp. Med., 141, 257

    Article  PubMed  CAS  Google Scholar 

  12. Root, R. K., Metcalf, J., Oshino, N. and Chance, B. (1975). H2O2 release from human granulocytes during phagocytosis. I. Documentation, quantitation, and some regulating factors. J. Clin. Invest., 55, 945

    Article  PubMed  CAS  Google Scholar 

  13. Weening, R. S., Wever, R. and Roos, D. (1975). Quantitative aspects of the production of superoxide radicals by phagocytizing human granulocytes. J. Lab. Clin. Med., 85, 245

    PubMed  CAS  Google Scholar 

  14. Dri, P., Bellavite, P., Bocton, G. and Rossi, F. (1977). Interrelationships between oxygen consumption, superoxide anion and hydrogen peroxide in phagocytosing guinea pig polymorphonuclear leucocytes. Mol. Cell. Biochem. (In press)

    Google Scholar 

  15. Rossi, F. and Zatti, M. (1966). The mechanism of the respiratory stimulation during phagocytosis in polymorphonuclear leucocytes. Biochim. Biophys. Acta, 113, 395

    PubMed  CAS  Google Scholar 

  16. Thurman, R. G., Ley, H. G. and Scholz, R. (1972). Hepatic microsomal ethanol oxidation. Hydrogen peroxide formation and the role of catalase. Eur. J. Biochem., 25, 420

    Article  PubMed  CAS  Google Scholar 

  17. Babior, B. M., Curnutte, J. T. and Kipnes, R. S. (1975). Pyridine nucleotide- dependent superoxide production by a cell-free system from human granulocytes. J. Clin. Invest., 56, 1035

    Article  PubMed  CAS  Google Scholar 

  18. Sbarra, A. J. and Karnovsky, M. L. (1959). The biochemical basis of phagocytosis. I. Metabolic changes during the ingestion of particles by polymorphonuclear leukocytes. J. Biol. Chem., 234, 1355

    PubMed  CAS  Google Scholar 

  19. Rossi, F. and Zatti, M. (1966). Effect of phagocytosis on the carbohydrate metabolism of polymorphonuclear leukocytes. Biochim. Biophys. Acta, 121, 110

    Article  PubMed  CAS  Google Scholar 

  20. Morton, D. J., Moran, J. F. and Stjernholm, R. L. (1969). Carbohydrate metabolism in leucocytes. XI. Stimulation of eosinophils and neutrophils. J. Reticuloendothel. Soc., 6, 525

    PubMed  CAS  Google Scholar 

  21. Reed, P. (1969). Glutathione and the hexose monophosphate shunt in phagocytizing and hydrogen peroxide-treated rat leukocytes. J. Biol. Chem., 244, 2459

    PubMed  CAS  Google Scholar 

  22. Baehner, R. L., Gilman, N. and Karnovsky, M. L. (1970). Respiration and glucose oxidation in human and guinea-pig leukocytes: comparative studies. J. Clin. Invest., 49, 692

    Article  PubMed  CAS  Google Scholar 

  23. Rossi, F., Romeo, D. and Patriarca, P. (1972). Mechanism of phagocytosis- associated oxidative metabolism of polymorphonuclear leucocytes and macrophages. J. Reticuloendothel. Soc., 12, 127

    PubMed  CAS  Google Scholar 

  24. Beck, W. S. (1958). Occurrence and control of the phosphogluconate oxidation in normal and leukemic leucocytes. J. Biol. Chem., 232, 271

    PubMed  CAS  Google Scholar 

  25. Patriarca, P., Cramer, R., Moncalvo, S., Rossi, F. and Romeo, D. (1971). Enzymatic basis of metabolic stimulation in leucocytes during phagocytosis: The role of activated NADPH oxidase. A rch. Biochem. Biophys., 145, 255

    Article  CAS  Google Scholar 

  26. Romeo, D., Zabucchi, G. and Rossi, F. (1977). Surface modulation of oxidative metabolism of polymorphonuclear leucocytes. In F. Rossi, P. Patriarca and D. Romeo (eds.). Movement, Metabolism and Bactericidal Mechanisms of Phagocytes, p. 153. (Padua: Piccin Medical Books)

    Google Scholar 

  27. De Châtelet, L. R., McCall, C. E., McPhail, L. C. and Johnston, R. B. Jr. (1974). Superoxide dismutase activity in leukocytes. J. Clin. Invest., 53, 1197

    Article  Google Scholar 

  28. Patriarca, P., Dri, P. and Rossi, F. (1974). Superoxide dismutase in leukocytes. FEBS Lett., 43, 247

    Article  PubMed  CAS  Google Scholar 

  29. Salin, M. L. and McCord, J. M. (1974). Superoxide dismutases in polymorphonuclear leukocytes. J. Clin. Invest., 54, 1005

    Article  PubMed  CAS  Google Scholar 

  30. Patriarca, P., Dri, P. and Snidero, M. (1977). Interference of myeloperoxidase with the estimation of superoxide dismutase activity. J. Lab. Clin. Med., 90, 289

    PubMed  CAS  Google Scholar 

  31. Segal, A. W. and Peters, T. J. (1977). Analytical subcellular fractionation of human granulocytes with special reference to the localisation of enzymes involved in microbicidal mechanisms. Clin. Sci. Mol. Med., 52, 429

    PubMed  CAS  Google Scholar 

  32. Evans, W. H. and Rechcigl, M. Jr. (1967). Factors influencing myeloperoxidase and catalase activities in polymorphonuclear leukocytes. Biochim. Biophys. Acta, 148, 243

    Article  PubMed  CAS  Google Scholar 

  33. Michell, R. H., Karnovsky, M. J. and Karnovsky, M. L. (1970). The distributions of some granule-associated enzymes in guinea-pig polymorphonuclear leucocytes. Biochem. J., 116, 207

    PubMed  CAS  Google Scholar 

  34. Fridovich, I. (1975). Superoxide dismutases. Ann. Rev. Biochem., 44, 877

    Article  Google Scholar 

  35. Simic, M. G., Taub, I. A., Tocci, J. and Hurwitz, P. A. (1975). Free-radical reduction of ferricytochrome-c. Biochem. Biophys. Res. Commun., 62, 161

    Article  PubMed  CAS  Google Scholar 

  36. Iyer, G. J. N. and Quastel, H. J. (1963). NADPH and NADH oxidation by guinea-pig polymorphonuclear leukocytes. Can. J. Biochem. Physiol, 41, 427

    Article  PubMed  CAS  Google Scholar 

  37. Rossi, F., Zatti, M. and Patriarca, P. (1969). H2O2 production during NADPH oxidation by the granule fraction of phagocytosing polymorphonuclear leucocytes. Biochim. Biophys. Acta, 184, 201

    Article  PubMed  CAS  Google Scholar 

  38. Patriarca, P., Dri, P., Kakinuma, K., Tedesco, F. and Rossi, F. (1975). Studies on the mechanism of metabolic stimulation in polymorphonuclear leucocytes during phagocytosis. I. Evidence for superoxide anion involvement in the oxidation of NADPH2. Biochim. Biophys. Acta, 385, 380

    Article  PubMed  CAS  Google Scholar 

  39. Jensen, M. S. and Bainton, D. F. (1973). Temporal changes in pH within the phagocytic vacuole of the polymorphonuclear neutrophilic leukocyte. J. Cell Biol., 56, 379

    Article  PubMed  CAS  Google Scholar 

  40. Curnutte, J. T., Kipnes, R. S. and Babior, B. M. (1975). Defect in pyridine nucleotide dependent superoxide production by a particulate fraction from the granulocytes of patients with chronic granulomatous disease. N. Engl. J. Med., 293, 628

    Article  PubMed  CAS  Google Scholar 

  41. Hohn, D. C. and Lehrer, R. I. (1975). NADPH oxidase deficiency in X- linked chronic granulomatous disease. J. Clin. Invest., 55, 707

    Article  PubMed  CAS  Google Scholar 

  42. De Chatelet, L. R., McPhail, L. C., Mullikin, D. and McCall, C. E. (1975). An isotopic assay for NADPH oxidase activity and some characteristics of the enzyme from human polymorphonuclear leukocytes. J. Clin. Invest., 55, 714

    Article  Google Scholar 

  43. Bainton, D. F. and Farquhar, M. G. (1966). Origin of granules in polymorphonuclear leukocytes. Two types derived from opposite faces of the Golgi complex in developing granulocytes. J. Cell. Biol, 28, 277

    Article  PubMed  CAS  Google Scholar 

  44. Takanaka, K. and O’Brien, P. J. (1975). Mechanism of H2O2 formation by leukocytes. Evidence for a plasma membrane location. Arch. Biochem. Biophys., 169, 428

    Article  PubMed  CAS  Google Scholar 

  45. Roos, D. (1977). Oxidative killing of microorganisms by phagocytic cells. Trends Biochem. Sci., 2, 61

    Article  CAS  Google Scholar 

  46. Rossi, F., Patriarca, P., Romeo, D. and Zabucchi, G. (1976). The mechanism of control of phagocytic metabolism. In S. M. Reichard, M. R. Escobar and H. Friedman (eds.). The Reticuloendothelial System in Health and Disease: Functions and Characteristics, p. 205. (New York: Plenum Publ. Corp.)

    Google Scholar 

  47. Patriarca, P., Cramer, R., Dri, P., Fant, L., Basford, R. E. and Rossi, F. (1973). NADPH oxidizing activity in rabbit polymorphonuclear leukocytes: localization in azurophilic granules. Biochem. Biophys. Res. Commun., 53, 830

    Article  PubMed  CAS  Google Scholar 

  48. Briggs, R. T., Drath, B. D., Karnovsky, M. L. and Karnovsky, M. J. (1975). Localization of NADH oxidase on the surface of human polymorphonuclear leukocytes by a new cytochemical method. J. Cell. Biol., 67, 566

    Article  PubMed  CAS  Google Scholar 

  49. Root, R. K. and Stossel, T. P. (1974). Myeloperoxidase mediated by granulocytes. Intracellular site of operation and some regulating factors. J. Clin. Invest., 53, 1207

    Article  PubMed  CAS  Google Scholar 

  50. Goldstein, I. M., Cerqueira, M., Lind, S. and Kaplan, H. B. (1977). Evidence that the superoxide-generating system of human leukocytes is associated with the cell surface. J. Clin. Invest., 59, 249

    Article  PubMed  CAS  Google Scholar 

  51. Evans, H. W. and Karnovsky, M. L. (1962). The biochemical basis of phagocytosis. IV. Some aspects of carbohydrate metabolism during phagocytosis. Biochemistr., 1, 159

    Article  PubMed  CAS  Google Scholar 

  52. Evans, A. E. and Kaplan, N. O. (1966). Pyridine nucleotide transhydrogen- ase in normal human and leukemic leucocytes. J. Clin. Invest., 45, 1268

    Article  PubMed  CAS  Google Scholar 

  53. Weening, R. S., Roos, D., van Schaik, M. L. J., Voetman, A. A., de Boer, M. and Loos, H. A. (1977). The role of glutathione in the oxidative metabolism of phagocytic leukocytes. Studies in a family with glutathione reductase deficiency. In F. Rossi, P. Patriarca and D. Romeo (eds.). Movement, Metabolism and Bactericidal Mechanisms of Phagocytes, p. 277 (Padua: Piccin Medical Books)

    Google Scholar 

  54. McPhail, L. C., De Châtelet, L. R. and Shirley, P. S. (1976). Further characterization of NADPH oxidase activity of human polymorphonuclear leukocytes. J. Clin. Invest., 58, 774

    Article  PubMed  CAS  Google Scholar 

  55. Cooper, M. R., De Chatelet, L. R., McCall, C. E., La Via, M. F., Spurr, C. L. and Baehner, R. L. (1972). Complete deficiency of leukocyte glucose- 6-phosphate dehydrogenase with defective bactericidal activity. J. Clin. Invest., 51, 769

    Article  PubMed  CAS  Google Scholar 

  56. De Chatelet, L. R., Cooper, M. R. and McCall, C. E. (1971). Dissociation by colchicine of the hexose monophosphate shunt activation from the bactericidal activity of the leukocyte. Infect. Immun., 3, 66

    Google Scholar 

  57. Hawkins, R. A. and Berlin, R. D. (1969). Purine transport in polymorphonuclear leukocytes. Biochim. Biophys. Acta, 173, 324

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 The Society for the Study of Inborn Errors of Metabolism

About this chapter

Cite this chapter

Romeo, D., Dri, P., Bellavite, P., Rossi, F. (1979). Molecular bases of the metabolic excitability of phagocytes. In: Güttler, F., Seakins, J.W.T., Harkness, R.A. (eds) Inborn Errors of Immunity and Phagocytosis. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-6197-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-6197-8_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-6199-2

  • Online ISBN: 978-94-011-6197-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics