Skip to main content

Bioelectric Parameters and Sodium Transport in Bullfrog Small Intestine

  • Chapter
Intestinal Ion Transport

Abstract

This discussion is primarily concerned with some recent and continuing studies in the author’s laboratory. These investigations are directed towards an analysis, in terms of current models of epithelial transport and electrophysiology, of the relationship between transepithelial Na+ transport and bioelectric parameters in the small intestine. One of the most striking developments in epithelial physiology during recent years has been the formation of general functional principles which, mutatis mutandis, are applicable to all transporting epithelia1,2. It is hoped, therefore, that the results and conclusions presented herein, though restricted in large measure to studies with one experimental system, the isolated small intestine of the bullfrog (Rana catesbeiana), will be of interest within the broader context of intestinal and epithelial transport.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ussing, H. H., Erlij, D. and Lassen, U. (1974). Transport pathways in biological membranes. Physiol. Revs., 36, 17.

    Article  CAS  Google Scholar 

  2. Frdömter, E. and Diamond, J. M. (1972). Route of passive ion permeation in epithelia. Nature New Biol., 235, 9

    Article  Google Scholar 

  3. Ussing, H. H. (1960). The alkali metal ions in isolated systems and tissues. In O. Eichler and A. Farah (eds.) Handbuch der Experimentellen Pharmakologie, Vol. 13, pp. 1–195. (Berlin: Springer-Verlag)

    Google Scholar 

  4. Schultz, S. G. and Curran, P. F. (1968). Intestinal absorption of sodium, chloride and water. In C. F. Code and W. Heidel (eds.) Handbook of Physiology, Section 6, Vol. III, pp. 1245–1275 (Washington, D.C.; American Physiological Society)

    Google Scholar 

  5. Quay, J. F. and Armstrong, W. McD. (1969). Sodium and chloride transport by isolated bullfrog small intestine. Amer. J. Physiol., 217, 694

    PubMed  CAS  Google Scholar 

  6. Armstrong, W. McD., Suh, T.K. and Gerencser, G. A. (1972). Stimulation by anoxia of active chloride transfer in isolated bullfrog small intestinal epithelia. Biochim. Biophys. Acta, 255, 647

    Article  PubMed  CAS  Google Scholar 

  7. Gerencser, G. A. and Armstrong, W. McD. (1972). Sodium transfer in bullfrog small intestine — stimulation by exogenous ATP. Biochim. Biophys. Acta, 255, 663

    Article  PubMed  CAS  Google Scholar 

  8. Levin, R. J. (1966). Transmural potentials across the small and large intestine of the bullfrog Rana catesbeiana. Proc. Soc. Exp. Biol. Med., 121, 1033

    PubMed  CAS  Google Scholar 

  9. White, J. F. and Armstrong, W. McD. (1971). Effect of transported solutes on membrane potentials in bullfrog small intestine. Amer. J. Physiol., 221, 194

    PubMed  CAS  Google Scholar 

  10. Armstrong, W. McD., Byrd, B. J., Cohen, E. S., Cohen, S. J., Hamang, P. H. and Myers, C. J. (1975). Osmotically induced electrical changes in isolated bullfrog small intestine. Biochim. Biophys. Acta (In press)

    Google Scholar 

  11. Quay, J. F. and Armstrong, W. McD. (1969). Enhancement of net sodium transport in isolated bullfrog small intestine by sugars and amino acids. Proc. Soc. Exp. Biol. Med., 131, 46

    PubMed  CAS  Google Scholar 

  12. Armstrong, W. McD. and Brich, D. M. (1975). Response of unidirectional Na+ fluxes across isolated bullfrog small intestine to transported solutes. (In preparation)

    Google Scholar 

  13. Schultz, S. G. and Zalusky, R. (1964). Ion transport in isolated rabbit ileum. I. Short-circuit current and Na+ fluxes. J. Gen. Physiol., 47, 567

    Article  PubMed  CAS  Google Scholar 

  14. Schultz, S. G. and Zalusky, R. (1964). Ion transport in isolated rabbit ileum. II. The interaction between active sodium and active sugar transport. J. Gen. Physiol., 48, 1043.

    Article  Google Scholar 

  15. Schultz, S. G. and Zalusky, R. (1965). Interactions between active sodium transport and active amino acid transport in isolated rabbit ileum. Nature, Lond., 205, 292

    Article  CAS  Google Scholar 

  16. Lyon, I. and Crane, R. K. (1966). Studies on transmural potentials in vitro in relation to intestinal absorption. I. Apparent Michaelis constants for Na+-dependent sugar transport. Biochim. Biophys. Acta, 112, 278

    Article  PubMed  CAS  Google Scholar 

  17. Koefoed-Johnsen, V., and Ussing, H. H. (1958). The nature of the frog skin-potential. Acta Physiol. Scand., 42, 298

    Article  PubMed  CAS  Google Scholar 

  18. Sawada, M. and Asano, T. (1963). Effects of metabolic disturbances on potential difference across intestinal wall of rat. Amer. J. Physiol., 204, 105

    PubMed  CAS  Google Scholar 

  19. Schultz, S. G., Fuisz, R. E. and Curran, P. F. (1966). Amino acid and sugar transport in rabbit Ileum. J. Gen. Physiol., 49, 849.

    Article  PubMed  CAS  Google Scholar 

  20. Csáky, T. Z. and Esposito, G. (1969). Osmotic swelling of intestinal epithelial cells during active sugar transport. Amer. J. Physiol., 217, 753

    PubMed  Google Scholar 

  21. Koopman, W. and Schultz, S. G. (1969). The effects of sugars and amino acids on mucosal Na+ and K+ concentrations in rabbit ileum. Biochim. Biophys. Acta, 173, 338

    Article  PubMed  CAS  Google Scholar 

  22. Armstrong, W. McD., Musselman, D. L. and Reitzug, H. C. (1970). Sodium, potassium and water content of isolated bullfrog small intestinal epithelia. Amer. J. Physiol., 219, 1023

    PubMed  CAS  Google Scholar 

  23. Schultz, S. G. Frizzell, R. A. and Nellans, H. N. (1974). Ion transport in mammalian small intestine. Ann. Rev. Physiol., 36, 51

    Article  CAS  Google Scholar 

  24. Lee, C. O. and Armstrong, W. McD. (1972). Activities of sodium and potassium ions in epithelial cells of small intestine. Science, 175, 1261

    Article  PubMed  CAS  Google Scholar 

  25. Armstrong, W. McD., Byrd, B. J. and Hamang, P. M. (1973). The Na+ gradient and D-galactose accumulation in epithelial cells of bullfrog small intestine. Biochim. Biophys. Acta, 330, 237

    Article  PubMed  CAS  Google Scholar 

  26. Diamond, J. M. and Bossen, W. H. (1967). Standing-gradient osmotic flow. A mechanism for coupling of water and solute transport in epithelia. J. Gen. Physiol., 50, 2061

    Article  PubMed  CAS  Google Scholar 

  27. Curran, P. F., Hajjar, J. J. and Glynn, I. M. (1970). The sodium-alanine interaction in rabbit ileum: effect of alanine on Na fluxes. J. Gen. Physiol., 55, 297

    Article  PubMed  CAS  Google Scholar 

  28. Ussing, H. H. and Windhager, E. E. (1964). Nature of shunt path and active transport path through frog skin epithelium. Acta Physiol. Scand., 61, 484

    PubMed  CAS  Google Scholar 

  29. Clarkson, T. W. (1967). The transport of salt and water across isolated rat ileum: evidence for at least two distinct pathways. J. Gen. Physiol., 50, 695

    Article  PubMed  CAS  Google Scholar 

  30. Smyth, D. H. and Wright, E. M. (1966). Streaming potentials in the rat small intestine. J. Physiol. Lond., 182, 591

    PubMed  CAS  Google Scholar 

  31. Rose, R. C. and Schultz, S. G. (1971). Studies on the electrical potential profile across rabbit ileum. Effects of sugars and amino acids on transmural and transmucosal electrical potential differences. J. Gen. Physiol., 57, 639

    Article  PubMed  CAS  Google Scholar 

  32. Csáky, T. W. (1975). Transcellular and intercellular intestinal transport. In T. Z. Csáky (ed.). Intestinal Absorption and Malabsorption, pp. 177–185. (New York: Raven Press)

    Google Scholar 

  33. Frizzell, R. A. and Schultz, S. G. (1972). Ionic conductances of extracellular shunt-pathway in rabbit ileum. J. Gen. Physiol., 59, 318

    Article  PubMed  CAS  Google Scholar 

  34. Munck, B. G. and Schultz, S. G. (1974). Properties of the passive conductance pathway across in vitro rat jejunum. J. Memb. Biol., 16, 163

    Article  CAS  Google Scholar 

  35. Nellans, H. N., Frizzell, R. A. and Schultz, S. G. (1974). Brush border processes and transepithelial Na and CL transport by rabbit ileum. Amer. J. Physiol., 226, 1131

    PubMed  CAS  Google Scholar 

  36. Desjeux, J. F., Tai, Y-H. and Curran, P. F. (1974). Characteristics of sodium flux from serosa to mucosa in rabbit ileum. J. Gen. Physiol., 64, 274

    Article  PubMed  CAS  Google Scholar 

  37. Schultz, S. G. and Curran, P. F. (1970). Coupled transport of sodium and organic solutes. Physiol Revs., 80, 637

    Google Scholar 

  38. Barry, R. J. C., Smyth, D. H. and Wright, E. M. (1965). Short-circuit current and solute transfer by rat jejunum. J. Physiol. Lond., 181, 410

    PubMed  CAS  Google Scholar 

  39. Taylor, A. E., Wright, E. M., Schultz, S. G. and Curran, P. F. (1968). Effect of sugars on ion fluxes in intestine. Amer. J. Physiol., 214, 836

    PubMed  CAS  Google Scholar 

  40. Field, M., Fromm, D. and McColl, I. (1970). Ion transport in rabbit ileal mucosa. I. Na and Cl fluxes and short-circuit current. Amer. J. Physiol., 220, 1388

    Google Scholar 

  41. Munck, B. G. (1972). Effects of sugar and amino acid transport on transepithelial fluxes of sodium and chloride of short-circuited rat jejunum. J. Physiol. Lond., 223, 699

    PubMed  CAS  Google Scholar 

  42. Kimmich, G. A. (1973). Coupling between Na+ and sugar absorption in small intestine. Biochim. Biophys. Acta, 300, 31

    PubMed  CAS  Google Scholar 

  43. Schultz, S. G., Curran, P. F., Chez, R. A. and Fuisz, R. E. (1967). Alanine and sodium fluxes across mucosal border of rabbit ileum. J. Gen. Physiol., 50, 1241

    Article  PubMed  CAS  Google Scholar 

  44. Goldner, A. M., Schultz, S. G. and Curran, P. F. (1969). Sodium and sugar fluxes across the mucosal border of rabbit ileum. J. Gen. Physiol., 53, 362.

    Article  PubMed  CAS  Google Scholar 

  45. Hoshi, T. and Komatsu, Y. (1970). Effects of anoxia and metabolic inhibitors on the sugar-evoked potential and demonstration of sugar-outflow potential in toad intestine. Tohoku J. Exp. Med., 100, 47

    Article  PubMed  CAS  Google Scholar 

  46. Gilles-Baillien, M. and Schoffeniels, E. (1965). Site of action of L-alanine and D-glucose on the potential difference across the intestine. Arch. Internat. Physiol. Biochim., 73, 355

    Article  CAS  Google Scholar 

  47. Wright, E. M. (1966). The origin of the glucose-dependent increase in the potential difference across the tortoise small intestine. J. Physiol Lond., 185, 486

    PubMed  CAS  Google Scholar 

  48. Lyon, I., and Sheerin, H. E. (1971). Studies on transmural potentials in vitro in relation to intestinal absorption. VI. The effect of sugars on electrical potential profiles in jejunum and ileum. Biochim. Biophys. Acta, 249, 1

    Article  PubMed  CAS  Google Scholar 

  49. Barry, R. J. C. and Eggenton, J. (1972). Membrane potentials of epithelial cells in rat small intestine. J. Physiol. Lond., 227, 201

    PubMed  CAS  Google Scholar 

  50. Machen, T. E. and Diamond, J. M. (1969). An estimate of the salt concentration in the lateral intercellular spaces of rabbit gall bladder during maximal fluid transport. J. Memb. Biol., 1, 194

    Article  Google Scholar 

  51. Marayama, T. and Hoshi, T. (1972). The effect of D-glucose on the electrical potential profile across the proximal tubule of the newt kidney. Biochim. Biophys. Acta, 282, 214

    Article  Google Scholar 

  52. Armstrong, W. McD. (1975). Electrophysiology of sodium transport by epithelial cells of the small intestine. In T. Z. Csáky (ed.) Intestinal Absorption and Malabsorption, pp. 45–66. (New York: Raven Press)

    Google Scholar 

  53. Barry, R. J. C. (1967). Electrical changes in relation to transport. Brit. Med. Bull, 23, 266

    PubMed  CAS  Google Scholar 

  54. Lev, A. A. and Armstrong, W. McD. (1975). Ionic activities in cells. In A. Kleinzeller and F. Bronner (eds.). Current Topics in Membranes and Transport. Vol. 6, pp. 59–123. (New York: Academic Press)

    Google Scholar 

  55. Thomas, R. C. (1972). Intracellular sodium activity and the sodium pump in snail neurones. J. Physiol Lond., 220, 55

    PubMed  CAS  Google Scholar 

  56. Windhager, E. E., Boulpaep, E. L. and Giebisch, G. (1966). Electrophysiological studies on single nephrons. In Third International Congress on Nephrology, Washington, D. C., Vol. I, p. 35

    Google Scholar 

  57. Lipton, P. (1972). Effect of changes in osmolarity on sodium transport across isolated toad bladder. Amer. J. Physiol., 222, 821

    PubMed  CAS  Google Scholar 

  58. Frazier, H. S. (1962). The electrical potential profile of the isolated toad bladder. J. Gen. Physiol., 45, 515

    Article  PubMed  CAS  Google Scholar 

  59. Herrera, F. C. (1971). Frog skin and toad bladder. In E. E. Bittar (ed.) Membranes and Transport, Vol. 1, pp. 1–47. (New York: Wiley-Interscience)

    Google Scholar 

  60. Schultz, S. G. (1972). Electrical potential differences and electromotive forces in epithelial tissues. J. Gen. Physiol., 59, 794

    Article  PubMed  CAS  Google Scholar 

  61. Patlak, C. S. and Rapoport, S. I. (1971). Theoretical analysis of net tracer flux due to volume circulation in a membrane with pores of different sizes. Relation to solute drag model. J. Gen. Physiol., 57, 113

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 MTP Press Ltd

About this chapter

Cite this chapter

Armstrong, W.M. (1976). Bioelectric Parameters and Sodium Transport in Bullfrog Small Intestine. In: Robinson, J.W.L. (eds) Intestinal Ion Transport. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-6156-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-6156-5_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-6158-9

  • Online ISBN: 978-94-011-6156-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics