Skip to main content

Thermofracture Mechanics

  • Chapter
  • 237 Accesses

Abstract

The mechanisms of fracture which may be encountered in engineering structures can be classified into two general groups. The first category is termed “brittle fracture”, which occurs in brittle materials such as glass, or in mild steel at very low temperature. Brittle fracture may also occur in most other engineering materials under very high loading rates or under the “plane strain” conditions encountered in heavy sectioned structural parts where the dimensions of the original defect are small compared to the characteristic dimensions of the part. This type of fracture is associated with relatively low fracture energy (i.e. the input energy required to propagate the crack) and small plastic deformation prior to and during crack extension. The second type of fracture falls into the general category of “ductile fracture” or high energy fracture++, and usually occurs in non-brittle materials under “plane stress” conditions. For example, thin-walled tubes and shell structures composed of materials with high ductility would be expected to undergo large plastic deformation prior to and during a rupture process.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Knott, J. F. 1973. Fundamentals of fracture mechanics. New York: John Wiley.

    Google Scholar 

  2. Brock, D. 1974. Elementary engineering fracture mechanics. Leyden: Noordhoff.

    Google Scholar 

  3. Griffith, A. A. 1925. The theory of rupture, Proc. Int. Conf. Appl. Mech. Delft, 1924, J. Waltman, Jr (ed.), 55–63.

    Google Scholar 

  4. Irwin, G. R. 1957. Analysis of stresses and strains near the end of a crack traversing a plate. J. Appl. Mech., ASME Trans. 24, 361–4.

    Google Scholar 

  5. Irwin, G. R., J. A. Kies and H. L. Smith 1958. Fracture strengths relative to onset and arrest of crack propagation. Proc. Am. Soc. Testing and Mat. 58, 640–60.

    Google Scholar 

  6. Dugdale, D. S. 1960. Yielding of steel sheets containing slits, J. Mech. & Phys. Solids 8, 100–4.

    Article  Google Scholar 

  7. Wells, A. A. 1963. Application of fracture mechanics at and beyond general yield. Report M13/63, British Welding Research Association.

    Google Scholar 

  8. Rice, J. R. 1968. Mathematical analysis in the mechanics of fracture. In Fracture: an advanced treatise. H. Liebowitz (ed.). New York: Academic Press, Vol. 2, pp. 191–311.

    Google Scholar 

  9. Hutchinson, J. W. 1968. Singular behavior at the end of a tensile crack in a hardening material. J. Mech. & Phys. Solids 16, 13–31.

    Article  Google Scholar 

  10. Rice, J. R. and G. F. Rosengren 1968. Plane strain deformation near a crack tip in a power-law hardening material. J. Mech. & Phys. Solids 16, 1–12.

    Article  Google Scholar 

  11. Paris, P. C. 1977. Fracture mechanics in the elastic-plastic regime. Flaw growth and fracture. ASTM STP 631, American Society for Testing and Materials, 3–27.

    Google Scholar 

  12. Rice, J. R. 1968. A path independent integral and the approximate analysis of strain concentration by notches and cracks. J. Appl. Mech. ASME Trans. 35, 379–86.

    Article  Google Scholar 

  13. Budiansky, B. and J. R. Rice 1973. Conservation laws and energy-release rates. J. Appl. Mech. March, 201–3.

    Google Scholar 

  14. Landes, J. D., J. A. Begley and G. A. Clarke (eds.), 1979. Elastic-plastic fracture. STP 668, American Society for Testing and Materials.

    Google Scholar 

  15. Landes, J. D. and J. A. Begley 1976. A fracture mechanics approach to creep crack growth. ASTM STP 590, American Society for Testing and Materials, 128–48.

    Google Scholar 

  16. Harper, M. P. and E. G. Ellison 1977. The use of the C*-parameter in predicting creep crack propagation rates. J. Strain Anal. 12(3), 167–79.

    Article  Google Scholar 

  17. Rice, J. R. 1978. D. R. J. Owen (eds.), 434–5

    Google Scholar 

  18. Lin, T. H. 1968. Theory of inelastic structures. New York: John Wiley, p. 112.

    Google Scholar 

  19. McMeeking, R. M. 1977. Path dependence of the J-integral and the role of J as a parameter characterizing the near tip field. Flaw growth and fracture. ASTM STP 631, American Society for Testing and Materials.

    Google Scholar 

  20. Paris, P. C, H. Tada, A. Zahoor and H. Ernst 1979. The theory of instability of tearing mode of elastic-plastic crack growth. In J. D. Landes, J. A. Begley and G. A. Clarke (eds.). Elastic-plastic fracture. STP 668, American Society for Testing and Materials.

    Google Scholar 

  21. Heyer, R. H. 1973. Crack growth resistance curves (R-curves). Literature review, fracture toughness evaluation by R-curve methods. ASTM STP 527, American Society for Testing and Materials, 1–16.

    Google Scholar 

  22. Carman, CM. 1973. Plane stress fracture testing using center cracked panels. Literature review, fracture toughness evaluation by R-curve methods. ASTM STP 527, American Society for Testing and Materials, 62–84.

    Google Scholar 

  23. Sullivan, A. M., C. N. Freed and J. Stoop 1973. Comparison of R-curves determined from different specimen types. Literature review, fracture toughness evaluation by R-curve methods. ASTM STP 527, American Society for Testing and Materials, 85–104.

    Google Scholar 

  24. McClintock, F. A. and G. R. Irwin 1965. Plasticity aspects of fracture mechanics. Fracture toughness testing and its applications. ASTM STP 381, American Society for Testing and Materials, 84–113.

    Google Scholar 

  25. Rice, J. R. 1975. Elastic-plastic models for stable crack growth in mechanics and mechanisms of crack growth. Proc. Conf. at Cambridge, England, April 1973, M. J. May (ed.), British Steel Corporation Physical Metallurgy Centre Publication, 14–39.

    Google Scholar 

  26. Kobayashi, A. S., D. E. Maiden, B. J. Simon and S. Ilda 1969. Application of finite element analysis method to two-dimensional problems in fracture mechanics, ASME Paper No. 69-WA/PVP-12, American Society of Mechanical Engineers.

    Google Scholar 

  27. Chan, S. K., I. S. Tuba and W. K. Wilson 1970. On the finite element method in linear fracture mechanics. Eng. Fracture Mech. 2, 1–17.

    Article  Google Scholar 

  28. Watwood, V. B. 1969. The finite element method for prediction of crack behavior. Nucl. Engng. & Des. 11, 323–32.

    Article  Google Scholar 

  29. Wilson, W. K. 1972. Some crack tip finite elements for plane elasticity. Stress analysis and growth of cracks. ASTM STP 513, American Society for Testing and Materials, 90–105.

    Google Scholar 

  30. Byskov, E. 1970. The calculation of stress intensity factors using the finite element method with cracked elements. Int. J. Fracture Mech. 6, 159–67.

    Google Scholar 

  31. Hilton, P. D. and G. C. Sih, 1973. Applications of the finite element method to the calculations of stress intensity factors. In Methods of analysis and solutions of crack problems. G. C. Sih (ed.), Leyden: Noordhoff. 426–83.

    Google Scholar 

  32. Tracey, D. M. 1971. Finite elements for determination of crack tip elastic stress intensity factors. Engng. Fracture Mech. 3, 225–65.

    Google Scholar 

  33. Henshell, R. D. 1975. Crack tip finite elements are unnecessary. Int. J. Num. Meth. Engng. 9, 495–507.

    Article  Google Scholar 

  34. Barsoum, R. S. 1976. On the use of isoparametric finite elements in linear fracture mechanics. Int. J. Num. Meth. Engng. 10, 25–37.

    Article  Google Scholar 

  35. Barsoum, R. S. 1977. Triangular quarter-point elements as elastic and perfectly-plastic crack tip elements. Int. J. Num. Meth. Engng. 11, 85–98

    Article  Google Scholar 

  36. Swedlow, J. L., M. L. Williams and W. Yang 1966. Elasto-plastic stresses and strains in cracked plates. Proc. First Int. Conf. Fracture at Sendai, Japan, 1965. T. Yokobori, T. Kawasaki and J. L. Swedlow (eds.). Japan Society for Strength and Fracture of Materials, Tokyo, 1, 259–82.

    Google Scholar 

  37. Swedlow, J. L. 1969. Elasto-plastic cracked plates in plane strain. Int. J. Fracture Mech. 5, 33–44.

    Google Scholar 

  38. Swedlow, J. L. 1969. Initial comparisons between experiment and theory of the strain fields in a cracked copper plate. Int. J. Fracture Mech. 5, 25–31.

    Google Scholar 

  39. Marcal, P. V. and I. P. King 1961. Elastic-plastic analysis of two dimensional stress systems by the finite element method. Int. J. Mech. Sci. 9, 143–55.

    Article  Google Scholar 

  40. Miyamoto, H., M. Shiratori and T. Miyoshi 1972. Elastic-plastic response at the tip of a crack. In Mechanical behavior of materials, Proc. Int. Conf. Fracture. Kyoto, Japan, 1, 433–45.

    Google Scholar 

  41. Larsson, S. G. and A. J. Carlsson 1973. Influence of non-singular stress terms and specimen geometry on small-scale yielding at crack tips in elastic-plastic materials. J. Mech. & Phys. Solids 21, 263–77.

    Article  Google Scholar 

  42. Levy, N., P. V. Marcal, W. J. Ostergren and J. R. Rice 1971. Small scale yielding near a crack in plane strain: a finite element analysis. Int. J. Fracture Mech. 7, 143–56.

    Google Scholar 

  43. Rice, J. R. and D. M. Tracey 1973. Computational fracture mechanics. In Numerical and computer methods in structural mechanics. S. J. Fenves, N. Perrone, A. Robinson and W. C. Schnobrich (eds.). New York: Academic Press, 585–623.

    Google Scholar 

  44. Tracey, D. M. 1976. Finite element solutions for crack tip behavior in small scale yielding. J. Engng. Mat. Technol., ASME Trans. 98, 146–51.

    Article  Google Scholar 

  45. McMeeking, R. M. 1977. Finite deformation analysis of crack tip opening in elastic-plastic materials and implications for fracture initiation. J. Mech. Phys. Solids 25, 357–81.

    Article  Google Scholar 

  46. Rice, J. R., R. M. McMeeking, D. M. Parks and E. P. Sorenson 1979. Recent finite element studies in plasticity and fracture mechanics. Computer Methods in Applied Mechanics and Engineering. 17/18, 411–42.

    Article  Google Scholar 

  47. Wells, A. A. 1969. Crack opening displacements from elastic-plastic analysis of externally notched tension bars. Engng. Fracture Mech. 1, 399–410.

    Article  Google Scholar 

  48. Turner, C. E. and J. S. T. Cheung 1972. Computation of post-yield behavior in notch bend and tension test pieces. J. Strain Anal. 7, 303–12.

    Article  Google Scholar 

  49. Sumpter, J. D. G. and C. E. Turner 1976. Use of the J contour integral in elastic-plastic fracture studies by finite-element methods. J. Mech. Engng. Sci. 18, 97–112.

    Article  Google Scholar 

  50. Parks, D. M. 1978. M. J. Owen (eds.), University College of Swansea, 464–78

    Google Scholar 

  51. Miyamoto, H. and K. Kageyama 1978. Extension of J-integral to the general elasto-plastic problem and suggestion of a new method for its evaluation. In Numerical methods in fracture mechanics. A. R. Luxmoore and M. J. Owen (eds.), University College of Swansea, 479–86.

    Google Scholar 

  52. Kobayashi, A. S., S. T. Chiu and R. Beenorkes 1973. A numerical and experimental investigation on the use of the J-integral.Engng. Fracture Mech. 5, 293–305.

    Article  Google Scholar 

  53. Anderson, H. 1973. A finite-element representation of stable crack-growth. J. Mech. & Phys. Solids. 21, 337–56.

    Article  Google Scholar 

  54. Hsu, T.-R. and A. W. M. Bertels 1976. Propagation and opening of a through crack in a pipe subjected to combined cyclic thermomechanical loading. J. Press. Vess. Technol., ASME Trans. 98, 17–25.

    Article  Google Scholar 

  55. De Koning, A. U. 1977. Fracture 1977, Proc. 4th Int. Conf. Fracture, University of Waterloo, June 1977, University of Waterloo Press, 3, 25–31.

    Google Scholar 

  56. Varanasi, S. R. 1977. Analysis of stable and catastrophic crack growth under rising load. Flaw growth and fracture. ASTM STP 631, American Society for Testing and Materials, 507–19.

    Google Scholar 

  57. De Koning, A. U., D. P. Rooke and C. Wheeler 1978. Energy dissipation during stable crack growth in aluminum alloy 2024-T3. Proc. Int. Conf. Num. Meth. Fracture Mech. A. R. Luxmoore and D. R. J. Owen (eds.). Swansea, 525–36.

    Google Scholar 

  58. Light, M. F. and A. R. Luxmoore 1977. A numerical investigation of post-yield fracture. J. Strain Anal. 12, 293–304.

    Article  Google Scholar 

  59. Light, M. F. and A. R. Luxmoore 1977. Crack extension forces in elasto-plastic stress fields. J. Strain Anal 12, 305–9.

    Article  Google Scholar 

  60. Belie, R. G. and J. N. Reddy 1980. Direct prediction of fracture for two-dimensional plane stress structures. Computers & Structures 11, 49–53.

    Article  Google Scholar 

  61. Lee, J. D. and H. Liebowitz 1978. Considerations of crack growth and plasticity in finite element analysis. Computers & Structures 8, 403–10.

    Article  Google Scholar 

  62. Kfouri, A. F. and K. J. Miller 1976. Crack separation energy rates in elastic-plastic fracture mechanics. Proc. Inst. Mech. Engrs. 190 (48), 571–84.

    Article  Google Scholar 

  63. Rice, J. R. and E. P. Sorensen 1978. Continuing crack-tip deformation and fracture for plane-strain crack growth in elastic-plastic solids. J. Mech. Phys. Solids 26, 163–86.

    Article  Google Scholar 

  64. Shih, C. F., H. G. de Lorenzi and W. R. Andrews 1979. Studies on crack initiation and stable crack growth. In Elastic-plastic fracture. J. D. Landes, J. A. Begley and G. A. Clarke (eds.). STP 668, American Society for Testing and Materials, 65–120.

    Google Scholar 

  65. Kanninen, M. F., E. E. Rybicki, R. B. Stonesifer, D. Broek, A. R. Rosenfield, C. W. Marshall and G. T. Hahn 1979. Elastic-plastic fracture mechanics for two-dimensional stable crack growth and instability problems. In Elastic-plastic fracture. J. D. Landes, J. A. Begley and G. A. Clarke (eds.). STP 668, American Society for Testing and Materials, 121–50.

    Google Scholar 

  66. Sorensen, E. P. 1979. A numerical investigation of plane strain stable crack growth under small-scale yielding conditions. In Elastic-plastic fracture. J. D. Landes, J. A. Begley and G. A. Clarke (eds.). STP 668, American Society for Testing and Materials, 151–74.

    Google Scholar 

  67. D’Escatha, Y. and J. C. Devaux 1979. Numerical study of initiation, stable crack growth, and maximum load, with a ductile fracture criterion based on the growth of holes. In Elastic-plastic fracture. J. D. Landes, J. A. Begley and G. A. Clarke (eds.). STP 668, American Society for Testing and Materials, 229–48.

    Google Scholar 

  68. Newman, J. C, Jr 1977. Finite element analysis of crack growth under monotonie and cyclic loading. Cyclic stress-strain and plastic deformation aspects of fatigue crack growth. ASTM STP 637, American Society for Testing and Materials, 56–80.

    Google Scholar 

  69. Ohji, K., K. Ogura and Y. Ohkubo 1975. Cyclic analysis of a propagating crack and its correlation with fatigue crack growth. Engng. Fracture Mech. 7,457–64.

    Article  Google Scholar 

  70. Socie, D. F. 1977. Prediction of fatigue crack growth in notched members under variable amplitude loading histories. Engng. Fracture Mech. 9, 849–65.

    Article  Google Scholar 

  71. Rolfe, S. T. and J. M. Barsom 1977. Fracture and fatigue control in structures. Englewood-Cliffs, NJ: Prentice-Hall. Ch. 4.

    Google Scholar 

  72. Schaeffer, B. J., H. W. Liu and J. S. Ke 1971. Deformation and the strip necking zone in a cracked steel sheet. Experim. Mech. 11, 172–5.

    Article  Google Scholar 

  73. Gavigan, W. J., J. S. Ke and H. W. Liu 1973. Local and gross deformations in cracked metallic plates. Int. J. Fracture. 9, 255–66.

    Article  Google Scholar 

  74. Evans, W. T., M. F. Light and A. R. Luxmoore 1980. An experimental and finite element investigation of fracture in aluminum thin plates. J. Mech. & Phys. Solids. 28, 167–89.

    Article  Google Scholar 

  75. Dieter, G. E. 1976. Mechanical metallurgy. New York: McGraw-Hill.

    Google Scholar 

  76. Blackburn, W. S., A. D. Jackson and T. K. Hellen 1977. An integral associated with the state of a crack tip in a non-elastic material. Int. J. Fracture. 13(2), 183–99.

    Article  Google Scholar 

  77. Ainsworth, R. A., B. K. Neale and R. H. Price 1978. Fracture behaviour in the presence of thermal strains. Proc. Conf. Tolerance of Flaws in Pressurized Components, Institute of Mechanical Engineering, May 16-18, London, 171–8.

    Google Scholar 

  78. Kishimoto, K., S. Aoki and M. Sakata 1980. On the path independent integral. 7. Engng. Fracture Mech. 13, 841–50.

    Article  Google Scholar 

  79. Wilson, W. K. and I. W. Yu 1979. The use of the Jintegral in thermal stress crack problems. Int. J. Fracture 15 (4), 377–87.

    Google Scholar 

  80. Chen, W. H. and K. T. Chen 1981. On the study of mixed mode thermal fracture using modified J k-integrals. Int. J. Fracture 17, 99–103.

    Article  Google Scholar 

  81. Dugdale, D. S. 1960. Yielding of steel sheets containing slits. J. Mech. Phys. Solids 8, 100–4.

    Article  Google Scholar 

  82. Bazant, Z. P. and L. Cedolin 1979. Blunt crack band propagation in finite element analysis. J. Engng. Mech. Division, ASCE Trans. 105, 297–315.

    Google Scholar 

  83. Nair, P. and K. L. Reifsnider 1974. Unimod: an application oriented finite element scheme for the analysis of fracture mechanics problems. Fracture Analysis, ASTM STP 560, American Society for Testing and Materials, 211–25.

    Google Scholar 

  84. Hsu, T.-R. and Y. J. Kim 1979. On slow crack growth in fuel cladding by finite element analysis. Paper C3/12, 5th International Conference on Structural Mechanics in Reactor Technology.

    Google Scholar 

  85. Kim, Y. J. and T.-R. Hsu 1982. A numerical analysis on stable crack growth under increasing load. Int. J. Fracture 20, 17–32.

    Article  Google Scholar 

  86. Dorn, W. S. and D. D. McCracken 1972. Numerical methods with Fortran IV case study. New York: John Wiley.

    Google Scholar 

  87. Kim, Y. J. 1981. Stable crack growth in ductile materials—a finite element approach, PhD thesis, University of Manitoba, Winnipeg, Canada.

    Google Scholar 

  88. Erdogan, F. and G. C. Sih 1963. On the crack extension in plates under plane loading and transverse shear. J. Basic Engng., ASME Trans. 85, 519–27.

    Article  Google Scholar 

  89. Sih, G. C. 1973. Some basic problems in fracture mechanics and new concepts. Engng. Fracture Mech. 5, 365–77.

    Article  Google Scholar 

  90. Palaniswamy, K. and W. G. Knauss 1972. Propagation of a crack under general, in-plane tension. Int. J. Fracture 8, 114–17.

    Article  Google Scholar 

  91. Hellen, T. K. 1975. On the method of virtual crack extensions. Int. J. Num. Meth. Engng. 9, 187–207.

    Article  Google Scholar 

  92. Sih, G. C. 1974. Fracture mechanics applied to engineering problems—strain energy density fracture criterion. Engng. Fracture Mech. 6, 361–86.

    Article  Google Scholar 

  93. Argyris, J. H. and S. Kelsey 1960. Energy theorems and structural analysis. London: Butterworth. 5.

    Google Scholar 

  94. Liu, Y. J. and T.-R. Hsu 1985. A general treatment of creep crack growth. Engng. Fracture Mech. 21(3), 437–52.

    Article  Google Scholar 

  95. Siverns, M. J. and A. T. Price 1973. Crack propagation under creep conditions in a quenched 21/4 chromium-1 molybdenum steel. Int. J. Fracture 9, 199.

    Article  Google Scholar 

  96. Neate, G. J. and M. J. Siverns 1974. The application of fracture mechanics to creep crack growth. Int. Conf. Creep & Fatigue in Elevated Temperature Applications 1, 234.

    Google Scholar 

  97. Floreen, S. 1975. The creep fracture of wrought nickel-base alloys by a fracture mechanics approach. Metall. Trans. 6A, 1741.

    Google Scholar 

  98. Kenyon, J. L., G. A. Webster, J. C. Radon and C. E. Turner 1974. An investigation of the application of fracture mechanics to creep cracking. Int. Conf. Creep & Fatigue in Elevated Temperature Applications 1, 156.

    Google Scholar 

  99. Yokobori, T., T. Kawasaki and M. Horiguchi 1976. Creep crack propagation in austenitic stainless steel at elevated temperature. Proc. 3rd Nat. Congress on Fracture. Law Tatry Slovakia.

    Google Scholar 

  100. Taira, S., R. Ohtani and A. Nitta 1974. Creep crack initiation and propagation in an 18 Cr-8 Ni stainless steel. Proc. 1973 Symp. Mech. Behavior Mat. 211.

    Google Scholar 

  101. Taira, S. and R. Ohtani 1974. Creep crack propagation and creep rupture of notched specimens. Int. Conf. Creep & Fatigue in Elevated Temperature Applications 1, 213.

    Google Scholar 

  102. Taira, S. and R. Ohtani 1978. Crack propagation in creep. Proc. 2nd Int. Conf. Mech. Behavior Mat. Boston. 409–65; special volume, American Society of Metals, 155-82.

    Google Scholar 

  103. Haigh, J. R. 1975. The growth of fatigue cracks at high temperature under predominately elastic loading. Engng. Fracture Mech. 271–84.

    Google Scholar 

  104. Vitek, V. 1977. A theory of the initiation of creep crack growth. Int. J. Fracture 13, 39–50.

    Article  Google Scholar 

  105. Pilkington, R., D. Hutchinson and C. L. Jones 1974. High-temperature crack opening displacement measurements in a ferrite steel. Metall. Sci. J. 8, 237–41.

    Article  Google Scholar 

  106. Nikbin, K. M., G. A. Webster and C. E. Turner 1976. Relevance of non-linear fracture mechanics to creep cracking. ASTM STP 601, American Society for Testing and Materials, 47–62.

    Google Scholar 

  107. Kachanov, L. 1981. Crack growth under conditions of creep and damage. In Creep in structures. A. R. S. Ponter and D. R. Hayhurst (eds.). Proc. 3rd Symp. Int. Union Theoret. and Appl. Mech., 520–4, Springer-Verlag.

    Google Scholar 

  108. Kubo, S., K. Ohji and K. Ogura 1979. An analysis of creep crack propagation on the basis of the plastic singular stress field. Engng. Fracture Mech. 11, 315–29.

    Article  Google Scholar 

  109. McCartney, L.N. 1980. Derivation of crack growth laws for linear viscoelastic solids based upon the concept of a fracture process zone. Int. J. Fracture 16, 4.

    Article  Google Scholar 

  110. To, K. C. 1975. A phenomenological theory of subcritical creep crack growth under constant loading in an inert environment. Int. J. Fracture 11, 641–8.

    Article  Google Scholar 

  111. Vitek, V. 1977. A theory of the initiation of creep crack growth. Int. J. Fracture 13, 39–50.

    Article  Google Scholar 

  112. Fu, L. S. 1980. Creep crack growth in technical alloys at elevated temperature—a review. Engng. Fracture Mech. 13, 307–30.

    Article  Google Scholar 

  113. Riedel, H. and J. R. Rice 1980. Tensile cracks in creeping solids. Fracture mechanics: twelfth conference. ASTM STP 700, American Society for Testing and Materials, 112–30.

    Google Scholar 

  114. Broberg, K. B. 1971. Crack-growth criteria and non-linear fracture mechanics. J. Mech. & Phys. Solids 19, 407–18.

    Article  Google Scholar 

  115. Broberg, K. B. 1975. Energy methods in statics and dynamics of fracture. J. Japan Soc. Strength and Fracture Materials 10(2), 33–45.

    Google Scholar 

  116. Penny, R. K. and D. L. Marriott 1971. Design for creep. New York: McGraw-Hill. Ch. 4, 47.

    Google Scholar 

  117. Taira, S., R. Ohtani and T. Kitamura 1979. Application of J-integral to high-temperature crack propagation: Part 1—creep crack propagation. ASME Trans. 101, 154–61.

    Article  Google Scholar 

  118. Liu, Y. J., T.-R. Hsu and Z. H. Zhai 1983. On the numerical evaluation of C*-integrals for creep fracture analysis. Proc. Int. Symp. Fracture Mechanics, Beijing, China, November 22–25.

    Google Scholar 

  119. Hsu, T.-R. and Z. H. Zhai 1984. A finite element algorithm for creep crack growth. Engng. Fracture Mech. 20, 521–33.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1986 T.-R. Hsu

About this chapter

Cite this chapter

Hsu, TR. (1986). Thermofracture Mechanics. In: The Finite Element Method in Thermomechanics. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5998-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5998-2_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-6000-1

  • Online ISBN: 978-94-011-5998-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics