Skip to main content

The importance of study design to the demonstration of efficacy with branched-chain amino acid enriched solutions

  • Chapter
Advances in Clinical Nutrition

Abstract

The host response to injury is characterized by disturbances in protein metabolism which result in an enhanced appearance of nitrogen, sulphur, and phosphorus in the urine. Increased catabolism of muscle protein due either to inhibition of protein synthesis or enhanced protein degradation increases the availability of endogenous amino acids to sustain protein synthesis and support increased energy expenditure1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blackburn, G. L. and O’Keefe, S. J. D. (1977). Protein sparing therapy during stress and injury. Proc. Western Hemisph. Nutrit. Congr. Vol. IV, p. 220. ( Chicago: American Medical Association )

    Google Scholar 

  2. Powanda, M. C. (1977). Changes in body balances of nitrogen and other key nutrients: description and underlying mechanisms. Am. J. Clin. Nutr., 30, 1254

    CAS  Google Scholar 

  3. Wannemacher, R. W., Jr., Dinterman, R. E., Pekarek, R. S. et al. (1975). Urinary amino acid excretion during experimentally induced sandfly fever in man. Am. J. Clin. Nutr., 28, 110

    CAS  Google Scholar 

  4. Ryan, N. T., Blackburn, G. L., Clowes, G. H. A. et al. (1974). Differential tissue sensitivity to elevated endogenous insulin levels during experimental peritonitis in rats. Metabolism, 23, 1081

    Article  Google Scholar 

  5. Blackburn, G. L. (1977). Lipid metabolism in infection. Am. J. Clin. Nutr., 30, 1321

    CAS  Google Scholar 

  6. Border, J. R., Burns, G. P., Rumph, C. et al. (1970). Carnitine levels in severe infection and starvation: a possible key to the prolonged catabolic state. Surgery, 68, 175

    CAS  Google Scholar 

  7. Beisel, W. R. and Wannemacher, R. W., Jr. (1980). Gluconeogenesis, ureagenesis and ketogenesis during sepsis. J. Parent. Enter. Nutr., 4, 277

    Article  CAS  Google Scholar 

  8. Miller, J. D. B., Bistrian, B. R., Blackburn, G. L. et al. (1977). Failure of postoperative infection to increase nitrogen excretion in patients maintained on peripheral amino acids. Am. J. Clin. Nutr., 30, 1523

    CAS  Google Scholar 

  9. Miller, J. D. B., Blackburn, G. L., Bistrian, B. R. et al. (1977). Effect of deep surgical sepsis on protein-sparing therapies and nitrogen balance. Am. J. Clin. Nutr., 30, 1528

    CAS  Google Scholar 

  10. Williamson, D. H., Farrell, R., Kerr, A. et al. (1977). Muscle protein catabolism after injury in man as measured by urinary excretion of 3-methylhistidine. Clin. Sci., 52, 527

    CAS  Google Scholar 

  11. Shinnick, F. L. and Harper, A. E. (1976). Branched chain amino acid oxidation by isolated rat tissue preparations. Biochim. Biophys. Acta, 437, 477

    Article  CAS  Google Scholar 

  12. O’Keefe, S. J. D., Moldawer, L. L., Young, V. R. et al. (1981). The influence of intravenous nutrition on protein dynamics following surgery. Metabolism, 30, 1150

    Article  Google Scholar 

  13. Birkhahn, R. H., Long, C. L., Fitkin, K. et al. (1980). Effects of major skeletal trauma on whole body protein turnover in man measured by L-(1–14C)-leucine. Surgery, 88, 294

    CAS  Google Scholar 

  14. Sakamoto, A., Moldawer, L. L., Palombo, J. D. et al. (1982). Alterations in tyrosine and protein kinetics produced by injury and branched chain amino acid administration. Clin. Sci., (in press)

    Google Scholar 

  15. Cerra, F. B., Upson, D., Angelico, R. et al. (1982). Branched chains support postoperative protein synthesis. Surgery, 92, 192

    CAS  Google Scholar 

  16. Bistrian, B. R. (1979). A simple technique to estimate severity of stress. Surg. Gyn. Obstet., 148, 675

    CAS  Google Scholar 

  17. Waterlow, J. C., Garlick, P. J. and Millward, D. J. (1978). Protein Turnover in Mammalian Tissues and in the Whole Body. ( New York: Elsevier/North-Holland )

    Google Scholar 

  18. Garlick, P. J., Clugston, G. A., Swick, R. W. et al. (1980). Diurnal pattern of protein and energy metabolism in man. Am. J. Clin. Nutr., 33, 1983

    Google Scholar 

  19. Waterlow, J. C. (1968). Observations on the mechanism of adaptations to low protein intakes. Lancet, 2, 1063

    Google Scholar 

  20. Echenique, M. M., Bistrian, B. R.,Moldawer, L. L. et al. (1982). Improvement in amino acid utilization in the critically ill with parenteral formulas enriched with branched chain amino acids. (in review)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 MTP Press Limited

About this chapter

Cite this chapter

Moldawer, L.L. et al. (1983). The importance of study design to the demonstration of efficacy with branched-chain amino acid enriched solutions. In: Johnston, I.D.A. (eds) Advances in Clinical Nutrition. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5918-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5918-0_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-5920-3

  • Online ISBN: 978-94-011-5918-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics