Skip to main content

Branched-chain amino acids: metabolic roles and clinical applications

  • Chapter
Advances in Clinical Nutrition

Abstract

The three branched-chain amino acids (BCAA), leucine, isoleucine and valine, are ‘essential’ amino acids, and together comprise about 40% of the minimum daily requirement for essential amino acids in man. Plasma levels of these amino acids are more drastically affected than the other AA following changes in caloric or protein intake1–4. Starvation for even 24 h will increase the plasma concentration of all three BCAA in humans1,5,6 and in rats3,7, while most other amino acid levels decline. Starvation beyond 1 week shows a fall in plasma BCAA to basal levels. Protein deprivation (in days, or longterm as in kwashiorkor) lowers the BCAA to below basal levels8,9.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adibi, S. (1970). Metabolism of branched-chain amino acids in altered nutrition. Metabolism, 25, 1287

    Article  Google Scholar 

  2. Adibi, S. (1980). Roles of branched-chain amino acids in metabolic regulation. J. Lab. Clin. Med., 95, 475

    CAS  Google Scholar 

  3. Hutson, S. and Harper, A. (1981). Blood and tissue branched-chain amino and a-keto acid concentrations: effect of diet, starvation, and disease. Am. J. Clin. Nutr., 34, 173

    CAS  Google Scholar 

  4. Wahren, J., Felig, P. and Hagenfeldt, L. (1976). Effect of protein ingestion on splanchnic and leg metabolism in normal man and in patients with diabetes mellitus. J. Clin. Invest., 57, 987

    Article  CAS  Google Scholar 

  5. Sherwin, R. (1978). Effect of starvation on the turnover and metabolic response to leucine. J. Clin. Invest., 61, 1471

    Article  CAS  Google Scholar 

  6. Elwyn, D., Fürst, P., Askanazi, J. and Kinney, J. (1981). Effect of fasting on muscle concentrations of branched-chain amino acids. In M. Walser and J. Williamson (eds.). Metabolism and Clinical Implications of Branched Chain Amino and Keto Acids. pp. 547–552. ( New York: Elsevier/North Holland )

    Google Scholar 

  7. Hutson, S., Zapalowski, C., Cree, T. and Harper, A. (1980). Acid metabolism in skeletal muscle. J. Biol. Chem., 255, 2418

    CAS  Google Scholar 

  8. Adibi, S. and Drash, A. (1970). Hormone and amino acid levels in altered nutritional states. J. Lab. Clin. Med., 76, 722

    CAS  Google Scholar 

  9. Ghisolfi, J., Charlet, P., Ser, N., Salvayre, R., Thouvenot, J. and Duole, C. (1978). Plasma free amino acids in normal children and in patients with proteincaloric malnutrition: fasting and infection. Pediatr. Res., 12, 912

    Article  CAS  Google Scholar 

  10. Moldawer, L., Sakamoto, A., Blackburn, G. and Bistrian, B. (1981). Alterations in protein kinetics produced by branched chain amino acid administration during infection and inflammation. In M. Walser and J. Williamson (eds.). Metabolism and Clinical Implications of Branched Chain Amino and Keto Acids. pp. 533–540. ( New York: Elsevier/North Holland )

    Google Scholar 

  11. Tischler, M. and Goldberg, A. (1980a). Production of alanine and glutamine by atrial muscle from fed and fasted rats. Am. J. Physiol., 238, E487

    CAS  Google Scholar 

  12. Tischler, M. and Goldberg, A. (1980b). Leucine degradation and release of glutamine and alanine by adipose tissue. J. Biol. Chem., 255, 8074

    CAS  Google Scholar 

  13. Buse, M. (1981). In vivo effects of branched-chain amino acids on muscle protein synthesis in fasted rats. Horm. Metabol. Res., 13, 502

    Article  CAS  Google Scholar 

  14. Hedden, M. and Buse, M. (1979). General stimulation of muscle protein synthesis by branched-chain amino acids. Proc. Soc. Exp. Biol. Med., 160, 410

    CAS  Google Scholar 

  15. Buse, M. and Reid, S. (1975). Leucine. A possible regulator of protein turnover in muscle. J. Clin. Invest., 56, 1250

    Article  CAS  Google Scholar 

  16. Krebs, H. and Lund, P. (1974). Aspects of the regulation of the metabolism of the branched-chain amino acids. Adv. Enzyme Regul., 15, 375

    Article  Google Scholar 

  17. Odessey, R. (1979). Amino acid and protein metabolism in the diaphragm. Am. Rev. Respir. Dis., 119, 107

    CAS  Google Scholar 

  18. Pek, S., Santiago, J. and Tai, T. (1978). L-Leucine-induced secretion of glucagon and insulin, and the `Off-Response’ to L-leucine in vitro. I. Characterization of the dynamics of secretion. Endocrinology, 103, 1208

    Article  CAS  Google Scholar 

  19. Malaisse, W. and Sener, A. (1981). Branched-chain amino and keto acids: effects upon insulin secretion. In M. Walser and J. Williamson (eds.). Metabolism and Clinical Implications of Branched Chain Amino and Keto Acids. pp. 181–186. ( New York: Elsevier/North Holland )

    Google Scholar 

  20. Ichihara, A., Noda, C. and Tanaka, K. (1981). Oxidation of branched-chain amino acids with special reference to their transaminase. In M. Walser and J. Williamson (eds.). Metabolism and Clinical Implications of Branched Chain Amino and Keto Acids. pp. 227–232. ( New York: Elsevier/North Holland )

    Google Scholar 

  21. Khatra, B., Chawla, R., Sewell, C. and Rudman, D. (1977). Dehydrogenases in primate tissues. Clin. Invest., 59, 558

    Article  CAS  Google Scholar 

  22. Paul, H. and Adibi, S. (1976). Assessment of effect of starvation, glucose, fatty acids and hormones on decarboxylation of leucine in skeletal muscle of rat. J. Nutr., 106, 1079

    CAS  Google Scholar 

  23. Sketcher, R., Fern, E. and James, W. (1974). The adaptation in muscle oxidation of leucine to dietary protein and energy intake. Br. J. Nutr., 31, 333

    Article  CAS  Google Scholar 

  24. Veerkamp, J. and Wagenmakers, A. (1981). Branched-chain 2-oxo acid metabolism in human and rat muscle. In M. Walser and J. Williamson (eds.). Metabolism and Clinical Implications of Branched Chain Amino and Keto Acids. pp. 163–168. ( New York: Elsevier/North Holland )

    Google Scholar 

  25. Mitch, W., Walser, M. and Sapir, D. (1981). Nitrogen sparing induced by leucine compared with that induced by its keto analogue, a-ketoisocaproate, in fasting obese man. J. Clin. Invest., 67, 553

    Article  CAS  Google Scholar 

  26. Hauschildt, S. and Brand, K. (1980). Effects of branched-chain a-keto acids on enzymes involved in branched-chain a-keto acid metabolism in rat tissues. J. Nutr., 110, 1709

    CAS  Google Scholar 

  27. Mimura, T., Yamada, C. and Swendseid, M. (1968). Influence of dietary protein levels and hydrocortisone administration on the branched-chain amino acid transaminase activity in rat tissues. J. Nutr., 95, 493

    CAS  Google Scholar 

  28. Hauschildt, S., Luthje, J. and Brand, K. (1981). Influence of dietary nitrogen intake on mammalian branched-chain a-keto acid dehydrogenase activity. J. Nutr., 111, 2188

    CAS  Google Scholar 

  29. Shinnick, F. and Harper, A. (1977). Effects of branched-chain amino acid antagonism in the rat on tissue amino acid and keto acid concentrations. J. Nutr., 107, 887

    CAS  Google Scholar 

  30. Potter, D., Sullivan, S. and Cox, R. (1980). Rhythmic variations of valine and leucine decarboxylation in rat diaphragm. Metabolism, 29, 435

    Article  CAS  Google Scholar 

  31. Goodlad, G., Tee, M. and Clark, C. (1981). Leucine oxidation and protein degradation in the extensor digitorum longus and soleus of the tumor-bearing host. Biochem. Med., 26, 143

    Article  CAS  Google Scholar 

  32. Li, J. and Goldberg, A. (1976). Effects of food deprivation on protein synthesis and degradation in rat skeletal muscle. Am. J. Physiol., 231, 441

    CAS  Google Scholar 

  33. Paul, H. and Adibi, S. (1978). Leucine oxidation in diabetes and starvation: effects of ketone bodies on branched-chain amino acid oxidation in vitro. Metabolism, 27, 185

    Article  CAS  Google Scholar 

  34. Goldberg, A., Tischler, M., DeMartino, G. and Griffin, G. (1980). Hormonal regulation of protein degradation in skeletal muscle. Fed. Proc., 39, 31

    CAS  Google Scholar 

  35. Frick, G., Tai, L., Blinder, L., and Goodman, H. (1981). L-Leucine activates branched-chain keto acid dehydrogenase in rat adipose tissue. J. Biol. Chem., 256, 2618

    CAS  Google Scholar 

  36. Jefferson, L., Li, J. and Rannels, S. (1977). Regulation by insulin of amino acid release and protein turnover in the perfused rat hemicorpus. J. Biol. Chem., 252, 1476

    CAS  Google Scholar 

  37. May, M., Mancusi, V., Aftring, R. and Buse, M. (1980). Effects of diabetes on oxidative decarboxylation of branched-chain keto acids. Am. J. Physiol., 239, E215

    CAS  Google Scholar 

  38. Waymack, P., DeBuysere, M. and Olson, M. (1980). Studies on the activation and inactivation of the branched-chain a-keto acid dehydrogenase in the perfused rat heart. Biol. Chem., 255, 9773

    CAS  Google Scholar 

  39. Rhead, W., Dubiel, B. and Tanaka, K. (1981). The tissue distribution of isovaleryl-CoA dehydrogenase in the rat. In M. Walser and J. Williamson (eds.). Metabolism and Clinical Implications of Branched-Chain Amino and Keto Acids. pp. 47 —52. (New York: Elsevier/ North Holland )

    Google Scholar 

  40. Lindsay, D. B. (1980). Amino acids as energy sources. Proc. Nutr. Soc., 39, 53

    Article  CAS  Google Scholar 

  41. Buse, M., Herlong, H. and Weigand, D. (1976). The effect of diabetes, insulin and the redox potential on leucine metabolism by isolated rat hemidiaphragm. Endo., 98, 1166

    CAS  Google Scholar 

  42. Chua, B., Siehl, D. and Morgan, H. (1980). A role for leucine in regulation of protein turnover in working rat hearts. Am. J. Physiol., 239, 510

    Google Scholar 

  43. Freund, H., Yoshimura, N. and Fischer, J. (1979). Effect of exercise on postoperative nitrogen balance. J. Appl. Physiol., 46, 141

    CAS  Google Scholar 

  44. Morgan, H., Chua, B., Fuller, E. and Siehl, D. (1980). Regulation of protein synthesis and degradation during in vitro cardiac work, Am. J. Physiol., 238, 431

    Google Scholar 

  45. Rennie, M., Edwards, R., Krywawych, S., Davies, C., Halliday, D., Waterlow, J. and Millward, D. (1981). Effect of exercise on protein turnover in man. Clin. Sci., 61, 627

    CAS  Google Scholar 

  46. Odessey, R. and Goldberg, A. (1972). Oxidation of leucine by rat skeletal muscle. Am. J. Physiol., 223, 1376

    CAS  Google Scholar 

  47. Ben Galim, E., Hruska, K., Bier, D., Matthews, D. and Haymand, M. (1980). Branched- chain amino acid nitrogen transfer to alanine in vivo in dogs. J. Clin. Invest., 66, 1295

    Article  CAS  Google Scholar 

  48. Garber, A., Karl, I. and Kipnis, D. (1976). Alanine and glutamine synthesis and release from skeletal muscle. J. Biol. Chem., 251, 836

    CAS  Google Scholar 

  49. Lockwood, A., McDonald, J., Reiman, R., Gelhard, A., Laughlin, J., Duffy, T. and Plum, F. (1979). The dynamics of ammonia metabolism in man. J. Clin. Invest., 63, 449

    Article  CAS  Google Scholar 

  50. Yamamoto, H., Aikawa, T., Matsutaka, H., Okuda, T. and Ishikawa, E. (1974). Interorganal relationships of amino acid metabolism in fed rats. Am. J. Physiol., 226, 1428

    CAS  Google Scholar 

  51. Harper, A. and Zapalowski, C. (1981). Interorgan relationships in the metabolism of the branched chain amino acids. In M. Walser and J. Williamson (eds.). Metabolism and Clinical Implications of Branched Chain Amino and Keto Acids. pp. 195–204. ( New York: Elsevier/North Holland )

    Google Scholar 

  52. Odessey, R. and Goldberg, A. (1979). Leucine degradation in cell-free extracts of skeletal muscle. Biochem. J., 178, 475

    CAS  Google Scholar 

  53. Odessey, R., Khairallah, E. and Goldberg, A. (1974). Origin and possible significance of alanine production by skeletal muscle. J. Biol. Chem., 249, 7623

    CAS  Google Scholar 

  54. Hutson, S. and Harper, A. (1978). Blood and tissue branched-chain and a-keto acid concentrations: effect of diet, starvation, and disease. Am. J. Clin. Nutr., 34, 173

    Google Scholar 

  55. Livesey, G. and Lund, P. (1980). Enzymic determination of branched-chain amino acids and 2-oxoacids in rat tissues. Biochem. J., 188, 705

    CAS  Google Scholar 

  56. Schneible, P., Airhart, J. and Low, R. (1981). Differential compartmentation of leucine for oxidation and for protein synthesis in cultural skeletal muscle. J. Biol. Chem., 256, 4888

    CAS  Google Scholar 

  57. Ryan, N., George, B., Egdahl, D. and Egdahl, R. (1974a). Chronic tissue insulin resistance following hemorrhagic shock, Ann. Surg., 180, 402

    Article  CAS  Google Scholar 

  58. Ryan, N., Blackburn, G. and Clowes, G. (1974b). Differential tissue sensitivity to elevated endogenous insulin levels during experimental peritonitis in rats. Metabolism, 23, 1081

    Article  CAS  Google Scholar 

  59. McMenamy, R., Birkhahn, R., Oswald, G., Reed, R., Rumph, C., Vaidyanath, N., Yu, L., Cerra, F., Sorkness, R. and Border, J. (1981). Multiple systems organ failure: I. The basal state. J. Trauma., 21, 99

    Article  CAS  Google Scholar 

  60. McMenamy, R., Birkhahn, R., Oswald, G., Reed, R., Rumph, C., Vaidyanath, N., Yu, L., Sorkness, R., Cerra, F. and Border, J. (1981). Multiple systems organ failure: Il. The effect of infusion of amino acids and glucose. J. Trauma., 21, 228

    Article  CAS  Google Scholar 

  61. Moyer, E., McMenamy, R., Cerra, F., Reed, R., Yu, L., Chenier, R., Caruana, J. and Border, J. (1981). Multiple systems organ failure: III. Contrasts in plasma amino acid profiles in septic trauma patients who subsequently survive and do not survive — effects of intravenous amino acids. J. Trauma., 21, 263

    Article  CAS  Google Scholar 

  62. Moyer, E., Border, J., Cerra, F., Caruana, J., Chenier, R. and McMenamy, R. (1981). Multiple systems organ failure: IV. Imbalances in plasma amino acids associated with exogenous albumin in the trauma-septic patient. J. Trauma., 21, 543

    Article  CAS  Google Scholar 

  63. Moyer, E., Border, J., McMenamy, R., Caruana, J., Chenier, R., and Cerra, F. (1981). Multiple systems organ failure: V. Alterations in the plasma protein profile in septic trauma — effects of intravenous amino acids. J. Trauma., 21, 645

    Article  CAS  Google Scholar 

  64. Siegel, J., Giovannini, I., Coleman, B., Cerra, F. and Nespoli, A. (1981). Death after portal decompressive surgery. Arch. Surg., 116, 1330

    Article  CAS  Google Scholar 

  65. Cerra, F., Siegel, J., Coleman, B., Border, J. and McMenamy, R. (1980). Septic autocannibalism. Ann. Surg., 192, 570

    Article  CAS  Google Scholar 

  66. Milewski, P., Threlfall, C., Heath, D., Holbrook, I., Wilford, K. and Irving, M. (1982). Intracellular free amino acids in undernourished patients with or without sepsis. Clin. Sci., 62, 83

    CAS  Google Scholar 

  67. Duff, J., Viidik, T., Marchuk, J., Holliday, R., Finley, R., Groves, A. and Woolt, L. (1979). Femoral arteriovenous amino acid differences in septic patiems. Surgery, 85, 344

    CAS  Google Scholar 

  68. Long, C., Birkhahn, R., Geiger, J. and Blakemore, W. (1981). Contribution of skeletal muscle protein in elevated rates of whole body protein catabolism in trauma patients. Am. J. Clin. Nutr., 34, 1087

    CAS  Google Scholar 

  69. Birkhahn, R., Long, C., Fitkin, D., Geiger, J. and Blakemore, W. (1980). Effects of major skeletal trauma on whole body protein turnover in man measured by L-(1, 14C)-leucine. Surgery, 88, 294

    CAS  Google Scholar 

  70. Chua, B., Siehl, D. and Morgan, H. (1979). Effect of leucine and metabolites of branched-chain amino acids on protein turnover in heart. J. Biol. Chem., 254, 8358

    CAS  Google Scholar 

  71. Freund, H., Yoshimura, N., Lunetta, L. and Fischer, J. (1978). The role of the branched-chain amino acids in decreasing muscled catabolism in vivo. Surgery, 83, 611

    CAS  Google Scholar 

  72. Freund, H., Yoshimura, N. and Fischer, J. (1980). The role of alanine in the nitrogen conserving quality of the branched-chain amino acids in the postinjury state. J. Surg. Res., 29, 23

    Article  CAS  Google Scholar 

  73. Lindberg, B. and Clowes, G. (1981). An experimental method for study of liver blood flow and metabolism in intact animals. J. Surg. Res., 31, 156

    Article  CAS  Google Scholar 

  74. O’Donnell, T., Clowes, G., Blackburn, G., Ryan, T., Benotti, P. and Miller, J. (1976). Proteolysis associated with a deficit of peripheral energy duel substrates in septic man. Surgery, 80, 192

    Google Scholar 

  75. Millward, D., Garlick, P., Nnanyelugo, D. and Waterlow, J. (1976). The relative importance of muscle protein synthesis and breakdown in the regulation of muscle mass. Biochem. J., 156, 185

    CAS  Google Scholar 

  76. Preedy, V. and Garlick, P. (1981). Rates of protein synthesis in skin and bone, and their importance in the assessment of protein degradation in the perfused rat hemicorpus. Biochem. J., 194, 373

    CAS  Google Scholar 

  77. Eriksson, S., Hagenfeldt, L. and Wahren, J. (1981). A comparison of the effects of intravenous infusion of individual branched-chain amino acids on blood amino acid levels in man. Clin. Sci., 60, 95

    CAS  Google Scholar 

  78. Hagenfeldt, L., Eriksson, S. and Wahren, J. (1980). Influence of leucine on arterial concentrations and regional exchange of amino acids in healthy subjects. Clin. Sci., 59, 173

    CAS  Google Scholar 

  79. Hagenfeldt, L. and Wahren, J. (1980). Experimental studies on the metabolic effects of branched-chain amino acids. Acta Chir. Scand. Suppl., 498, 88

    CAS  Google Scholar 

  80. Aoki, T., Brennan, M., Muller, W. and Cahill, G. (1974). Amino acid levels across normal forearm muscle: whole blood vs. plasma. Adv. Enzyme Regul., 12, 157

    Article  CAS  Google Scholar 

  81. McCormick, M. and Webb, K. (1982). Plasma free, erythrocyte free and plasma peptide amino acid exchange of calves in steady state and fasting metabolism. J. Nutr., 112, 276

    CAS  Google Scholar 

  82. Matthews, D., Bier, D., Rennie, M., Edwards, R., Halliday, D., Millward, D. and Clugston, G. (1981). Regulation of leucine metabolism in man: a stable isotope study. Science, 214, 1129

    Article  CAS  Google Scholar 

  83. Nissen, S. and Haymond, M. (1981). Effects of fasting on flux and interconversion of leucine and a-ketoisocaproate in vivo. Am. J. Physiol., 241, E72

    CAS  Google Scholar 

  84. Motil, K., Matthews, D., Bier, D., Burke, J., Munro, H. and Young, V. (1981). Whole-body leucine and lysine metabolism: response to dietary protein intake in young men. Am. J. Physiol., 240, E712

    CAS  Google Scholar 

  85. Fulks, R., Li, J. and Goldberg, A. (1975). Effects of insulin, glucose and amino acids on protein turnover in rat diaphragm. J. Biol. Chem., 250, 290

    CAS  Google Scholar 

  86. Li, J. and Jefferson, L. (1978). Influence of amino acid availability on protein turnover in perfused skeletal muscle. Biochim. Biophys. Acta, 544, 351

    Article  CAS  Google Scholar 

  87. Buse, M., Atwell, R. and Mancusi, V. (1979). In vitro effect of branched-chain amino acids on the ribosomal cycle in muscles of fasted rats. Horm. Metab. Res., 11, 289

    CAS  Google Scholar 

  88. Buse, M. and Weigand, D. (1977). Studies concerning the specificity of the effect of leucine on the turnover of proteins in muscles of control and diabetic rats. Biochim. Biophys. Acta, 475, 81

    CAS  Google Scholar 

  89. Sener, A. and Malaisse, W. (1981). The stimulus—secretion coupling of amino acid-induced insulin release: insulinotropic action of branched-chain amino acids at physiological concentrations of glucose and glutamine. Eur. J. Clin. Invest., 11, 455

    Article  CAS  Google Scholar 

  90. Seglen, P., Gordon, P. and Poli, A. (1980). Amino acid inhibition of the autophagic/lyso-somal pathway of protein degradation in isolated rat hepatocytes. Biochim. Biophys. Acta, 630, 103

    Article  CAS  Google Scholar 

  91. Tischler, M. (1980). Is regulation of proteolysis associated with redox-state changes in rat skeletal muscle? Biochem. J., 192, 963

    CAS  Google Scholar 

  92. Millward, D. and Waterlow, J. (1978). Effect of nutrition on protein turnover in skeletal muscle. Fed. Proc., 37, 2283

    CAS  Google Scholar 

  93. Spielman, G. (1981). Coma: a clinical review. Heart Lung, 10, 700

    CAS  Google Scholar 

  94. Levy, D., Bates, D., Caronna, J., Cartlidge, N., Knill-Jones, R., Lapinski, R., Singer, B., Shaw, D. and Plum, F. (1981). Prognosis in nontraumatic coma, Ann. Int. Med., 94, 293

    CAS  Google Scholar 

  95. Zieve, L. (1981). The mechanism of hepatic coma. Hepatology, 1, 360

    Article  CAS  Google Scholar 

  96. Schenker, S., Breen, K. and Hoyumpa, A. (1974). Hepatic encephalopathy: current status. Gastroenterology, 66, 121

    CAS  Google Scholar 

  97. Heffner, T., Hartman, J. and Seiden, L. (1980). Feeding increases dopamine metabolism in the rat brain. Science, 208, 1168

    Article  CAS  Google Scholar 

  98. Preskorn, S., Irwin, G., Simpson, S., Friesen, D., Rinne, J. and Jerkovitch, G. (1981). Medical therapies for mood disorders alter the blood-brain barrier. Science, 213, 469

    Article  CAS  Google Scholar 

  99. Peroutka, S., Moskowitz, M., Reinhard, J. and Snyder, S. (1980). Neurotransmitter receptor binding in bovine cerebral microvessels. Science, 208, 610

    Article  CAS  Google Scholar 

  100. Koen, H., Okuda, K., Musha, H., Tateno, Y., Fukuda, N., Mutasumoto, T., Shisido, F., Rikitake, T., linuma, T., Kurisu, A. and Arimizu, N. (1980). A dynamic study of rectally absorbed ammonia in liver cirrhosis using (13N) ammonia and a positron camera. Dig. Dis. Sci., 25, 842

    Article  CAS  Google Scholar 

  101. Weber, F., Fresard, K. and Lolly, B. (1982). Effects of lactulose and neomycin on urea metabolism in cirrhotic subjects. Gastroenterology, 82, 213

    Google Scholar 

  102. Rudman, D., Galambos, J., Smith, R., Salam, A. and Warren, D. (1973). Comparison of the effect of various amino acids upon the blood ammonia concentration of patients with liver disease. Am. J. Clin. Nutr., 26, 916

    CAS  Google Scholar 

  103. Uribe, M., Berthier, J., Lewis, H., Mata, J., Sierra, J., Garcia-Ramos, G., Acosta, J. and Dehesa, M. (1981). Lactose enemas plus placebo tablets vs. neomycin tablets plus starch enemas in acute portal systemic encephalopathy. Gastroenterology, 81, 101

    CAS  Google Scholar 

  104. Walshe, J., DeCarli, L. and Davidson, C. (1958). Some factors influencing cerebral oxidation in relation to hepatic coma. Clin. Sci., 17, 11

    CAS  Google Scholar 

  105. Weber, F. (1981). Therapy of portal-systemic encephalopathy: the practical and the promising. Gastroenterology, 81, 174

    Google Scholar 

  106. Orlandi, F., Freddara, U., Candelaresi, M., Morettini, A., Corazza, G., DeSimone, A., Dobrilla, G., and Cavallini, G. (1981). Comparison between neomycin and lactulose in 173 patients with hepatic encephalopathy. Dig. Dis. Sci., 26, 498

    Article  CAS  Google Scholar 

  107. Cascino, A., Cangiano, C., Calcaterra, V., Rossi-Fanelli, F. and Capocaccia, L. (1978). Plasma amino acids imbalance in patients with liver disease. Am. J. Dig. Dis., 23, 591

    Article  CAS  Google Scholar 

  108. Egberts, E., Hamster, W., Jurgens, P., Schumacher, H., Fondalinski, G., Reinhard, U. and Schomerus, H. (1981). Effect of branched chain amino acids on latent portal-systemic encephalopathy. In M. Walser and J. Williamson (eds.). Metabolism and Clinical Implications of Branched Chain Amino and Keto Acids. pp. 453–463. ( New York: Elsevier/North Holland )

    Google Scholar 

  109. Fischer, J., Yoshimura, N., Aguirre, A. James, J., Cummings, M., Abel, R. and Deindoerfer, F. (1974). Plasma amino acids in patients with hepatic encephalopathy. Am. J. Surg., 127, 40

    CAS  Google Scholar 

  110. Fischer, J., Rosen, H., Ebeid, A., James, J., Keane, J. and Soeters, P. (1976). The effect of normalization of plasma amino acids on hepatic encephalopathy in man. Surgery, 80, 77

    CAS  Google Scholar 

  111. Knell, A., Davidson, A., Williams, R., Kantamaneni, B. and Curzon, G. (1974). Dopamine and serotonin metabolism in hepatic encephalopathy. Br. Med. J., 1, 549

    Article  CAS  Google Scholar 

  112. McCullough, A., Czaja, A., Jones, J. and Go, V. (1981). The nature and prognostic significance of serial amino acid determinations in severe chronic active liver disease. Gastroenterology, 81, 645

    CAS  Google Scholar 

  113. Sketcher, R., Fern, B. and James, W. (1974). The adaption in muscle oxidation of leucine to dietary protein and energy intake. Br. J. Nutr., 31, 333

    Article  CAS  Google Scholar 

  114. Mans, A., Saunders, A., Kirsch, E. and Biebuyck, J. (1979). Correlation of plasma and brain amino acid and putative neurotransmitter alterations during acute hepatic coma in the rat. J. Neurochem., 32, 285

    Article  CAS  Google Scholar 

  115. Shaw, S. and Lieber, C. (1978). Plasma amino acid abnormalities in the alcoholic. Gastroenterology, 74, 677

    CAS  Google Scholar 

  116. Siassi, F., Wang, M., Kopple, J. and Swendseid, M. (1977). Plasma tryptophan levels and brain serotonin metabolism in chronically uremic rats. J. Nutr., 107, 840

    CAS  Google Scholar 

  117. Smith, A., Rossi-Fanelli, F., Freund, H. and Fischer, J. (1979). Sulfur-containing amino acids in experimental hepatic coma in the dog and the monkey. Surgery, 85, 677

    CAS  Google Scholar 

  118. Anderson, G. and Blendis, L. (1981). Plasma neutral amino acid ratios in normal man and in patients with hepatic encephalopathy: correlations with self-selected protein and energy consumption. Am. J. Clin. Nutr., 34, 377

    CAS  Google Scholar 

  119. James, J., Jeppson, B., Ziparo, V. and Fischer, J. (1979). Hyperammonaemia, plasma amino acid imbalance, and blood-brain amino acid transport: a unified theory of portal-systemic encephalopathy. Lancet, 772

    Google Scholar 

  120. James, J. and Fischer, J. (1981). Transport of neutral amino acids at the blood-brain barrier. Pharmacology, 22, 1

    Article  CAS  Google Scholar 

  121. Anonymous. (1980). Hepatic encephalopathy: a unifying hypothesis. Nutr. Reviews, 38, 371

    Google Scholar 

  122. Oldendorf, W. and Szabo, J. (1976). Amino acid assignment to one of three blood-brain barrier amino acid carriers. Am. J. Physiol., 230, 94

    CAS  Google Scholar 

  123. Fischer, J. and James, J. (1972). Treatment of hepatic coma and hepatorenal syndrome. Am. J. Surg., 123, 222

    Article  CAS  Google Scholar 

  124. Schafer, D. and Jones, E. (1982). Hepatic encephalopathy and the y-aminobutyric-acid neurotransmitter system. Lancet, 1, 18

    Article  CAS  Google Scholar 

  125. Bloxam, D. and Curzon, G. (1978). A study of proposed determinants of brain tryptophan concentration in rats after portocaval anastomosis of sham operation. J. Neurochem., 31, 1255

    Article  CAS  Google Scholar 

  126. Wustrow, Th., van Hoorn-Hickman, R., van Hoorn, W., Vinik, A., Fischer, M. and Terblanche, J. (1981). Acute hepatic ischaemia in the pig — the changes in plasma hormones, amino acids and brain biochemistry. Hepato-gastroenterol., 28, 143

    CAS  Google Scholar 

  127. Langer, M., Masala, A., Alagna,S.,Rassu, S., Madeddu, G., Solinas, A. and Chiandussi, L. (1981). Growth hormone, (GH) secretion in hepatic encephalopathy. Clin. Endocrinol., 14, 189

    CAS  Google Scholar 

  128. Fernstrom, J. (1981). Effects of precursors on brain neurotransmitter synthesis and brain functions. Diabetologia, 20, 281

    Article  CAS  Google Scholar 

  129. Arnold, M. and Fernstrom, J. (1981). L-Tryptophan injection enhances pulsatile growth hormone secretion in the rat. Endocrinology, 108, 331

    Article  CAS  Google Scholar 

  130. Heroux, E. and Roberge, A. (1981). Different influences of two types of diets commonly used for rats on a series of parameters related to the metabolism of central serotonin and noradrenaline. Can. J. Physiol. Pharmacol., 58, 108

    Article  Google Scholar 

  131. James, J., Hodgman, J., Funovics, J., Yoshimura, N. and Fischer, J. (1976). Brain tryptophan, plasma free tryptophan and distribution of plasma neutral amino acid. Metabolism, 25, 471

    Article  CAS  Google Scholar 

  132. Kamata, S., Okada, A., Watanabe, T., Kawashima, Y. and Wada, H. (1980). Effects of dietary amino acids on brain amino acids and transmitter amines in rats with a portacaval shunt. J. Neurochem., 35, 1190

    Article  CAS  Google Scholar 

  133. Pardridge, W. (1981). Transport of nutrients and hormones through the blood-brain barrier. Diabetologia, 20, 246

    Article  CAS  Google Scholar 

  134. Weiser, M., Riederer, P. and Kleinberger, G. (1978). Human cerebral free amino acids in hepatic coma. J. Neur. Transm., Suppl. 14, 95

    CAS  Google Scholar 

  135. Ashely, D. and Curzon, G. (1981). Effects of long-term low dietary tryptophan intake on determinants of 5-hydroxytryptamine metabolism in the brains of young rats. J. Neurochem., 37, 1385

    Article  Google Scholar 

  136. Thurmond, J., Kramarcy, N., Lasley, S. and Brown, J. (1980). Dietary amino acid precursors: effects on central monoamines, aggression, and locomotor activity in the mouse. Pharmacol. Biochem. Behay., 12, 525

    Article  CAS  Google Scholar 

  137. Arnold, L. and Nemzer, E. (1982). New evidence on diet in hyperkinesis. Pediatr., 69, 250

    CAS  Google Scholar 

  138. Wurtman, R. (1981). The effects of nutritional factors on memory. ActaNeurol. Scand., Suppl. 64, 145

    Google Scholar 

  139. Seltzer, S., Marcus, R. and Stoch, R. (1981). Perspectives in the control of chronic pain by nutritional manipulation. Pain, 11, 141

    Article  CAS  Google Scholar 

  140. Wurtman, R., Wurtman, J. and Fernstrom, J. (1980). Composition and method for suppressing appetite for calories as carbohydrates. US Patent No. 4 210 637

    Google Scholar 

  141. Freund, H., Ryan, J. and Fischer, J. (1978). Amino acid derangements in patients with sepsis: treatment with branched chain amino acid rich infusions. Ann. Surg., 188, 423

    Article  CAS  Google Scholar 

  142. Holm, E., Striebel, J., Meisinger, E., Haux, R., Langhans, W. and Becker, H. (1978). Amino acids mixtures for parenteral feeding in liver insufficiency. Infusionsther., 5, 274

    CAS  Google Scholar 

  143. Chase, R., Davies, M., Trewey, P., Silk, D. and Williams, R. (1978). Plasma amino acid profiles in patients with fulminant hepatic failure treated by repeated polyacrylonitrile membrane hemodialysis. Gastroenterology, 75, 1033

    CAS  Google Scholar 

  144. Wardle, E. and Williams, R. (1980). Depressed uptake of serotonin by platelets in hepatic encephalopathy. Biochem. Med., 24, 223

    Article  CAS  Google Scholar 

  145. Ono, J., Hutson, D., Dombro, R., Levi, J., Livingstone, A. and Zepra, R. (1978). Tryptophan and hepatic coma. Gastroenterology, 74, 296

    Google Scholar 

  146. Jeppsson, B., Freund, H., Gimmon, Z., James, J., von Meyenfeldt, M. and Fischer, J. (1981). Blood-brain barrier derangement in sepsis: cause of septic encephalopathy? Am. J. Surg., 141, 136

    Article  CAS  Google Scholar 

  147. Daniel, P., Pratt, O. and Wilson, P. (1977). The exclusion of L-isoleucine or of L-leucine from the brain of the rat, caused by raised levels of L-valine in the circulation, and the manner in which this exclusion can be partially overcome. J. Neurol. Sci., 31, 421

    Article  CAS  Google Scholar 

  148. Benjamin, A., Verjee, Z. and Quastel, J. (1980). Kinetics of cerebral uptake processes in vitro of L-glutamine, branched-chain L-amino acids, and L-phenylalanine: effects of ouabain. J. Neurochem., 35, 67

    Article  CAS  Google Scholar 

  149. Binek-Singer, P. and Johnson, T. (1981). The inhibition of brain protein synthesis following leucine or valine injection can be prevented. Biochem. Biophys. Res. Commun., 103, 1209

    Article  CAS  Google Scholar 

  150. Fernstrom, J. and Faller, D. (1978). Neutral amino acids in the brain: changes in response to food ingestion. J. Neurochem., 30, 1531

    Article  CAS  Google Scholar 

  151. Huet, P., Pomier-Layrargues, G., Duguay, L. and du Souich, P. (1981). Blood-brain transport of tryptophan and phenylalanine: effect of portacaval shunt in dogs. Am. J. Physiol., 241, G163

    CAS  Google Scholar 

  152. Sarna, G., Bradbury, M. and Cavanagh, J. (1977). Permeability of the blood-brain barrier after portocaval anastomosis in the rat. Brain Res., 138, 550

    Article  CAS  Google Scholar 

  153. Pardridge, W. (1977). Kinetics of competitive inhibition of neutral amino acid transport across the blood-brain barrier. J. Neurochem., 28, 103

    Article  CAS  Google Scholar 

  154. Cremer, J. (1981). Nutrients for the brain: problems in supply. Early Hum. Dev., 5, 117

    Article  CAS  Google Scholar 

  155. Samuels, S. and Schwartz, S. (1981). Compartmentation in amino acid transport across the blood brain barrier. Neurochem. Res., 6, 755

    Article  CAS  Google Scholar 

  156. Freund, H., Krause, R., Rossi-Fanelli, F., Smith, A. and Fischer, J. (1978). Amino acid-induced coma in normal animals; prevention by branched-chain amino acids. Gastroenterology, 74

    Google Scholar 

  157. Zieve, L., Onstad, G., Doizaki, W., Timmerman, W. and Palm, S. (1980). High brain concentrations of phenylalanine, tryptophan and methionine do not cause coma in rats or dogs, Gastroenterology, 79, (Abstr.)

    Google Scholar 

  158. Baker, A. (1979). Amino acids in liver disease: a cause of hepatic encephalopathy? J. Am. Med. Assoc., 242, 355

    Article  CAS  Google Scholar 

  159. Zieve, L. (1979). Amino acids in liver failure. Gastroenterology, 76, 219

    CAS  Google Scholar 

  160. Hawkins, R. (1981). Blood-brain barrier during portal-systemic encephalopathy. Lancet, ii, 302

    Google Scholar 

  161. Hawkins, R. (1982). The blood-brain barrier in encephalopathy. Lancet, 1, 398

    Article  CAS  Google Scholar 

  162. James, J., Freund, H. and Fischer, J. (1979). Amino acids in hepatic encephalopathy. Gastroenterology, 77, 421

    CAS  Google Scholar 

  163. Preskorn, S., Irwin, G., Simpson, S., Friesen, D., Rinne, J. and Jerkovich, (1981). Medical therapies for mood disorders alter the blood-brain barrier. Science, 213, 469

    Article  CAS  Google Scholar 

  164. Blackburn, G., Moldawer, L., Usui, S., Bothe, A., O’Keefe, S. and Bistrian B. (1979). Branched chain amino acid administration and metabolism in starvation, injury and infection. Surgery, 86, 307

    CAS  Google Scholar 

  165. Blackburn, G., Desai, S., Keenan, R., Bentley, B., Moldawer, L. and Bistrian, B. (1981). Clinical use of branched-chain amino acid enriched solutions in the stressed and injured patient. In M. Walser and J. Williamson (eds.). Metabolism and Clinical Implications of Branched Chain Amino and Keto Acids. pp. 521–526. ( New York: Elsevier/North Holland )

    Google Scholar 

  166. Ferenci, P., Funovics, J. and Wewalka, F. (1978). Therapy of hepatic encephalopathy, modification of the plasma aminogram using AA infusions. Chir. Form Exp. Klin., 183

    Google Scholar 

  167. Fiaccadori, F., Ghinelli, F., Pelosi, G., Sacchini, D., Vaona, G., Zeneroli, M., Rocchi, E., Santunione, V., Gibertini, P. and Ventura, E. (1980). Selective amino acid solutions in hepatic encephalopathy treatment. Ric. Clin. Lab., 10, 411

    CAS  Google Scholar 

  168. Fischer, J., Freund, H., Rosen, H., Yoshimura, N., Bradford, R. and Sofio, C. (1978). Effects of F080 in clinical hepatic encephalopathy: result of a phase I study. Gastroenterology, 75, 963

    Google Scholar 

  169. Freund, H., Hoover, H., Atamian, S. and Fischer, J. (1979). Infusion of the branched chain amino acids in postoperative patients. Ann. Surg., 190, 18

    Article  CAS  Google Scholar 

  170. Jellinger, K., Riederer, P., Rausch, W. and Kothbauer, P. (1978). Brain monoamines in hepatic encephalopathy and other types of metabolic coma. J. Neur. Trans., Suppl 14, 103

    CAS  Google Scholar 

  171. Okada, A., Kamata, S., Kim, C. and Kawashima, Y. (1981). Treatment of hepatic encephalopathy with BCAA-rich amino acid mixture. In M. Walser and J. Williamson (eds.). Metabolism and Clinical Implications of Branched Chain Amino and Keto Acids. pp. 447–452. ( New York: Elsevier/North Holland )

    Google Scholar 

  172. Rakette, S., Fischer, M., Reimann, H. and von Sommoggy, S. (1981). Effects of special amino acid solutions in patients with liver cirrhosis and hepatic encephalopathy. In M. Walser and J. Williamson (eds.). Metabolism and Clinical Implications of Branched Chain Amino and Keto Acids. pp. 419–425. ( New York: Elsevier/North Holland )

    Google Scholar 

  173. Riederer, Von P., Jellinger, K., Rausch, W., Kleinberger, G. and Kothbauer, P. (1978). Zur biochemie der hepatischen enzaphalopathien. Z. Gastroenterol., 16, 768

    CAS  Google Scholar 

  174. Riederer, P. (1980). Oral and parenteral nutrition with L-valine: mode of action. Nutr. Metabol., 24, 209

    Article  CAS  Google Scholar 

  175. Rossi-Fanelli, F., Angelico, M., Cangiano, C., Cascino, A., Capocaccia, R., DeConciliis, D., Riggio, O. and Capocaccia, L. (1981). Effect of glucose and/or branched-chain amino acid infusion on plasma amino acid imbalance in chronic liver failure. J. Poren. Ent. Nutr., 5, 414

    Article  CAS  Google Scholar 

  176. Watanbe, A., Higashi, T. and Nagashima, H. (1978). An approach to nutritional therapy of hepatic encephalopathy by normalization of deranged amino acid patterns in serum. Acta Med. Okayama, 32, 427

    Google Scholar 

  177. Leon, I., Martinez, J., Martin, P., Pombo, M., Leon, P. and Perez, A. (1978). Parenteral nutrition in patients with hepatic encephalopathy. Rev. Clin. Esp., 151, 129

    Google Scholar 

  178. Elia, M. and Livesey, G. (1981). Branched chain amino acid and oxo acid metabolism in human and rat muscle. In M. Walser and J. Williamson (eds.). Metabolism and Clinical Implications of Branched Chain Amino and Keto Acids. pp. 257–262. ( New York: Elsevier/North Holland )

    Google Scholar 

  179. Abumrad, N., Patrick, L., Rannels, S. and Lacy, W. (1981). Branched chain amino acids, and a-keto isocaproate balance across human forearm muscle. In M. Walser and J. Williamson (eds.). Metabolism and Clinical Implications of Branched Chain Amino and Keto Acids. pp. 317–322. ( New York: Elsevier/North Holland )

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 MTP Press Limited

About this chapter

Cite this chapter

Madsen, D.C. (1983). Branched-chain amino acids: metabolic roles and clinical applications. In: Johnston, I.D.A. (eds) Advances in Clinical Nutrition. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5918-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5918-0_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-5920-3

  • Online ISBN: 978-94-011-5918-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics