Skip to main content

SiO2 Etching in High-Density Plasmas: Differences with Low-Density Plasmas

  • Chapter

Part of the book series: NATO ASI Series ((NSSE,volume 336))

Abstract

Silicon dioxide (SiO2) is the most important insulator employed in silicon integrated circuit (IC) technology. It is used as the material of choice to electrically isolate the conductive portions of devices or circuits from each other, e.g. as the gate insulator of field effect transistors, field oxide or trench refill material when isolating individual devices, and as interlevel dielectric which isolates the metallic interconnections between individual devices from each other.[1] State-of-the-art ICs employ up to 5 metal wiring levels at this time, and the use of up to 8 levels of metal is projected within several years. The wiring is imbedded in an equal number of deposited and subsequently patterned SiO2 films.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Wolf, and R.N. Tauber, Silicon Processing for the VLSI Era. (Sunset Beach, Lattice Press, 1986),

    Google Scholar 

  2. J.M. Cook, O. Turmel, T. Wicker, and J. Winniczek, spivn in Technical Proceedings, Semicon Japan Proceedings, Anonymous (Chiba, SEMI, 1993);p. 414.

    Google Scholar 

  3. G.S. Oehrlein, D. Zhang, D. Vender, and M. Haverlag, J. Vac. Sci. Technol. A 12, 323 (1994).

    Article  Google Scholar 

  4. G.S. Oehrlein, D. Zhang, D. Vender, and O. Joubert, J. Vac. Sci. Technol. A 12, 333 (1994).

    Article  Google Scholar 

  5. Plasma Etching, D.M. Manos and D.L. Flamm, editors. (Academic Press, San Diego, 1989).

    Google Scholar 

  6. R.A. Heinecke, Solid State Electronics 18, 1146 (1975).

    Article  Google Scholar 

  7. L.M. Ephrath, and E.J. Petrillo, J. Electrochem. Soc. 129, 2282 (1982).

    Article  Google Scholar 

  8. G.S. Oehrlein, and H.L. Williams, J. Appl. Phys. 62, 662 (1987).

    Article  Google Scholar 

  9. G.S. Oehrlein, S.W. Robey, J.L. Lindstrom, K.K. Chan, M.A. Jaso, and G.J. Scilla, J. Electrochem. Soc. 136, 2050 (1989).

    Article  Google Scholar 

  10. M.M. Millard, and E. Kay, J. Electrochem. Soc. 129, 160 (1982).

    Article  Google Scholar 

  11. P.J. Hargis Jr., and M.J. Kushner, Appl. Phys. Lett. 40, 779 (1982).

    Article  Google Scholar 

  12. E. Kay, spivnin Methods and Materials in Microelectronic Technology, J. Bargon, editor. (New York, Plenum Publish. Corp. 1984);p. 243.

    Google Scholar 

  13. R.A. Gottscho, T. Nakano, N. Sadeghi, D.J. Trevor, and T.C. Lee, Rev. Sci. Instrum. 63, 4920(1992).

    Google Scholar 

  14. K. Nojiri, E. Iguchi, K. Kawamura, and K. Kadota, Anonymous (Tokyo, Bus. Center for Acad. Soc. Japan, 1989);p. 153–6.

    Google Scholar 

  15. S. Samukawa, Jpn. J. Appl. Phys. 32, 6080 (1993).

    Article  Google Scholar 

  16. H. Nogami, Y. Ogahara, K. Mashimo, Y. Nakagawa, and T. Tsukada, Plasma Sources Sci. Technol. 5, 181 (1996).

    Article  Google Scholar 

  17. F.H. Bell, O. Joubert, G.S. Oehrlein, Y. Zhang, and D. Vender, J. Vac. Sci. Technol. A 12, 3095(1994).

    Google Scholar 

  18. Y. Horiike, K. Kubota, H. Shindo, and T. Fukasawa, J. Vac. Sci. Technol. A 13, 801 (1995).

    Article  Google Scholar 

  19. N.R. Rueger, J.J. Beulens, M. Schaepkens, M.F. Doemling, J.M. Mirza, T.E.F.M. Standaert, and G.S. Oehrlein, J. Vac. Sci. & Technol. A 15, xx (1997).

    Article  Google Scholar 

  20. J.P. Simko, and G.S. Oehrlein, J. Electrochem. Soc. 138, 2748 (1991).

    Article  Google Scholar 

  21. J.W. Butterbaugh, D.C. Gray, and H.H. Sawin, J. Vac. Sci. Technol. B 9, 1461 (1991).

    Article  Google Scholar 

  22. C. Steinbruchei, J. Electrochem. Soc. 130, 648 (1983).

    Article  Google Scholar 

  23. K. Kirmse, A. Wendt, G.S. Oehrlein, and Y. Zhang, J. Vac. Sci. Technol. A 12, 1287(1994).

    Article  Google Scholar 

  24. Y. Zhang, G.S. Oehrlein, and F.H. Bell, J. Vac. Sci. Technol. A 14, 2127 (1996).

    Article  Google Scholar 

  25. N.R. Rueger, M. Schaepkens, M.F. Doemling, J.M. Mirza, T.E.F.M. Standaert, and G.S. Oehrlein, J. Vac. Sci. & Technol. A 15, xx (1997).

    Article  Google Scholar 

  26. O. Joubert, G.S. Oehrlein, and Y. Zhang, J. Vac. Sci. Technol. A 12, 658 (1994).

    Article  Google Scholar 

  27. O. Joubert, G.S. Oehrlein, M. Surendra, and D. Zhang, J. Vac. Sci. Technol. A 12, 1957(1994).

    Google Scholar 

  28. T. Fukasawa, K. Kubota, H. Shindo, and Y. Horiike, Jpn. J. Appl. Phys. 33, 7042 (1994).

    Article  Google Scholar 

  29. O. Joubert, G.S. Oehrlein, and M. Surendra, J. Vac. Sci. Technol. A 12, 665 (1994).

    Article  Google Scholar 

  30. J.C. Arnold, and H.H. Sawin, J. Appl. Phys. 70, 5314–17 (1991).

    Article  Google Scholar 

  31. D.J. Economou, and R.C. Alkire, J. Electrochem. Soc. 135, 941 (1988).

    Article  Google Scholar 

  32. S.G. Ingram, J. Appl. Phys. 68, 500–4 (1990).

    Article  Google Scholar 

  33. K. Kurihara, and M. Sekine, Plasma Sources Sci. Technol. 5, 121 (1996).

    Article  Google Scholar 

  34. M.F. Doemling, N.R. Rueger, and G.S. Oehrlein, Appl. Phys. Lett. 68, 10 (1996).

    Article  Google Scholar 

  35. J.A. O’Neill, and J. Singh, J. Appl. Phys. 77, 497 (1995).

    Article  Google Scholar 

  36. J.A. O’Neill, and J. Singh, J. Appl. Phys. 76, 5967 (1994).

    Article  Google Scholar 

  37. Y. Hikosaka, M. Nakamura, and H. Sugai, Jpn. J. Appl. Phys. 33, 2157 (1994).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Oehrlein, G.S. (1997). SiO2 Etching in High-Density Plasmas: Differences with Low-Density Plasmas. In: Williams, P.F. (eds) Plasma Processing of Semiconductors. NATO ASI Series, vol 336. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5884-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5884-8_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6486-6

  • Online ISBN: 978-94-011-5884-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics