Skip to main content

Magnetized Surface-Wave Discharges for Submicrometer Pattern Transfer

  • Chapter
Plasma Processing of Semiconductors

Part of the book series: NATO ASI Series ((NSSE,volume 336))

  • 972 Accesses

Abstract

Most dry etching techniques used for fabricating integrated structures with controlled profiles utilize the capacitively-coupled discharge, in the so-called reactive ion etching (RIE) configuration. To achieve submicrometer patterning, several requirements must be met which include strict observance of dimensions, perfect anisotropy, high microscopic uniformity (no influence of the size and shape of patterns on the etch rate), low substrate damage, high etching selectivity and an acceptable etch rate. Filling all these requirements at the same time implies a perfect control of plasma parameters, in particular, of ion energy. RIE discharges are routinely used on production lines in microcircuit fabrication, among other reasons because they allow for the simultaneous treatment of several substrates, but they suffer from serious limitations. First, charged particle density is weak (typically 108 to 1010 ions/cm3), yielding an ionization degree below 0.1% due to a relatively high operating pressure (typically 0.02–0.5 torr). Another important drawback is certainly the high sheath potential (typically 100 V), which reduces the ability to control the ion bombardment energy. In the coming generation of integrated circuits, pattern dimensions will be reduced to typically 0.25 µm, which requires the ion flux towards the surface to be perfectly perpendicular to it. At the same time, these new devices will be less tolerant to substrate surface damaging, which requires lower energy ions impinging on the surface than with RIE systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Okamoto, Y. and Tamagawa, H. (1972) Production of large area high current ion beams, Rev. Sci. Instrum. 43 1193–1197.

    Article  Google Scholar 

  2. Boswell, R.W. and Porteous, R.K. (1987) Large volume, high density rf inductively coupled plasma, Appl. Phys. Lett. 50, 1130–1132.

    Article  Google Scholar 

  3. Asmussen, J. (1989) ECR microwave discharges for etching and thin-film deposition J. Vac. Sci. Technol. A7, 883–893.

    Google Scholar 

  4. Pichot, M., Durandet, A., Pelletier, J., Arnal, Y. and Vallier, L. (1988) Microwave multipolar plasma excited by distributed electron cyclotron resonance: concept and performance, Rev. Sci. Instrum. 59, 1072–1075.

    Article  Google Scholar 

  5. Popov, O.A. (1995) High Density Plasma Sources: Design, Physics and Performances, Noyes, Park Ridge, New Jersey

    Google Scholar 

  6. Margot, J. and Moisan, M., Physics of surface wave discharges, this book.

    Google Scholar 

  7. Gat, E., Bounasri, F., Chaker, M., Ravet, M.F., Moisan, M. and Margot, J. (1996) Temperature effects on tungsten etching, Microelec. Eng. 30, 337–340

    Article  Google Scholar 

  8. Bounasri, F., Gat, E., Chaker, M., Moisan, M., Margot, J. and Ravet, M.F. (1995) Highly anisotropic etching of submicrometer features on tungsten, J. Appl. Phys. 78, 6780–6783.

    Article  Google Scholar 

  9. Margot, J. and Gottscho, R.A. (1992) Operation and properties of magnetically assisted high frequency discharges intended for applications, in M. Moisan and J. Pelletier (eds.), Microwave excited Plasmas, Elsevier, Amsterdam, pp. 213–228.

    Google Scholar 

  10. Sadeghi, N., Nakano, T., Trevor, D.J. and Gottscho, R.A. (1991) Ion transport in an electron cyclotron resonance plasma, J. Appl. Phys. 70, 2552–2569.

    Article  Google Scholar 

  11. Pérès, I. and Margot, J. (1996) The power balance of a magnetically confined surface wave plasma column, submitted to Plasma Sources Sci Technol. (April 1996).

    Google Scholar 

  12. Margot, J. and Moisan, M. (1991) Electromagnetic surface waves for a new approach to the investigation of plasmas produced at electron cyclotron resonance (ECR), J. Phys. D 24, 1765–1788.

    Article  Google Scholar 

  13. Nakano, T., Sadeghi, N., Trevor, D.J., Gottscho, R.A. and Boswell, R.W. (1992) Metastable chlorine ion transport in a diverging field electron cyclotron resonance, J. Appl. Phys. 72, 3384–3393.

    Article  Google Scholar 

  14. Nakano, T., Gottscho, R.A., Sadeghi, N., Trevor, D.J., Boswell, R.W., Perry, A.J., Lee, T.C., Giapis, K.P. and Margot, J. (1992) Helicon wave excited plasmas, Oyo Buturi 61, 711–717.

    Google Scholar 

  15. Nakano, T., Giapis, K.P., Gottscho, R.A., Lee, T.C. and Sadeghi, N. (1993) Ion velocity distributions in helicon wave plasmas: magnetic field and pressure effects, J. Vac. Sci. Technol. B 11, 2046–2056.

    Article  Google Scholar 

  16. Pérès, L, Fortin, M. and Margot, J. (1996) The radial structure of a magnetically confined surface-wave plasma column, Phys. Plasmas 3,1754–1769.

    Article  Google Scholar 

  17. St-Onge, L., Margot, J. and Chaker, M. (1996) Characteristics of a large volume SF6 magnetoplasma source based on surface wave propagation, manuscript in preparation, to be submitted to Plasmas Sources Sci. Technol..

    Google Scholar 

  18. St-Onge, L., Margot, J. and Chaker, M., (1996) Measurements of negative ion fraction in electronegative plasmas through the propagation of ion acoustic waves, manuscript in preparation, to be submitted to Appl. Phys. Lett.

    Google Scholar 

  19. Petit, B. and Pelletier, J. (1987) A parametric study of the etching of silicon in SF6 microwave multipolar plasmas: interpretation of etching mechanisms, Jpn. J. Appl. Phys. 26, 825–834.

    Article  Google Scholar 

  20. Paranjpe, A.P., McVittie, J.P. and Self, S.A. (1990) A tuned Langmuir probe for measurements in rf glow discharges, J. Appl. Phys. 67, 6718–6727.

    Article  Google Scholar 

  21. Bacal, M., Hamilton, G.W., Bruneteau, A.M., Doucet, H.J. and Taillet, J. (1979) Measurement of H density in plasma by photodetachment, Rev. Sci. Instrum. 50, 719–721.

    Article  Google Scholar 

  22. St-Onge, L., Chaker, M. and Margot, J. (1996) Photodetachment technique for the determination of the negative ion fraction in a low-pressure SF6 magnetoplasma, manuscript in preparation, to be submitted to J. Vac. Sci. Technol

    Google Scholar 

  23. Nagaseki, K., Ishikawa, I., Nishimura, E., Saito, Y. and Suganomato, S. (1995) Negative ions in 13.56 MHz discharge of SF6 gas in a plasma diode, Jpn. J. Appl. Phys. 34, L852–855.

    Article  Google Scholar 

  24. Chen, E.C.M., Shuie, L.-R., D’Sa, E.D., Batten, C.F. and Wentworth, W.E. (1988) The negative ion states of sulfur hexafluoride, J. Chem. Phys. 88, 4711–4719.

    Article  Google Scholar 

  25. Blondel, C., Cacciani, P., Delsart, C. and Trainham, R. (1989) High-resolution determination of the electron affinity of fluorine and bromine using crossed ion and laser beams, Phys. Rev. A 40, 3698–3701.

    Article  Google Scholar 

  26. Hotop, H. and Lineberger, W.C. (1985) Binding energies in atomic negative ions, J. Phys. Chem. Ref. Data 14, 731–750.

    Article  Google Scholar 

  27. Miller, A.E.S., Miller, T.M., Viggiano, A.A., Morris, R.A., Doren, J.M.V., Arnold, S.T. and Paulson, J.F. (1995) Negative ion chemistry of SF4, J. Chem. Phys. 102, 8865–8873.

    Article  Google Scholar 

  28. Cooney, J.L., Aossey, D.W., Williams, J.E., Gavin, M.T., Kim, H.S., Hsu, Y.-C, Scheller, A. and Lonngren, K.E. (1993) Observations on negative ion plasmas, Plasma Sources Sci. Technol. 2, 73–80.

    Article  Google Scholar 

  29. Peignon, M.C., Cardinaud, Ch. and Turban, G. (1991) Etching processes of tungsten in SF6-O2 radio-frequency plasmas, J. Appl. Phys. 70, 3314–3323.

    Article  Google Scholar 

  30. Walkup, R.E., Saenger, K.L. and Selwyn, G.S. (1986) Studies of atomic oxygen in O2+CF4 rf discharges by two-photon laser-induced fluorescence and optical emission spectroscopy, J. Chem, Phys., 84, 2668–2674.

    Article  Google Scholar 

  31. Barbeau, C., St-Onge, L., Margot, J., Chaker, M., Sadeghi, N. and Booth, J.P. (1996) On the mechanisms of S2 formation and loss in high-density SF6 plasmas, manuscript in preparation, to be submitted to J. Appl. Phys.

    Google Scholar 

  32. Bounasri, F., Moisan, M., St-Onge, L., Margot, J., Chaker, M., El Khakani, M.A. and Gat, E. (1995) Etching characteristics of thin films of tungsten, amorphous silicon carbide and SAL-603 resist submitted to a surface-wave driven SF6 magnetoplasma near electron cyclotron resonance conditions J. Appl. Phys. 77 4030–4038.

    Article  Google Scholar 

  33. St-Onge, L., Sadeghi, N., Booth, J.P., Margot, J. and Barbeau, C. (1995) On the formation and loss of S2 molecules in a reactive ion etching reactor operating with SF6 J. Appl. Phys. 78 6957–6966.

    Article  Google Scholar 

  34. Chaker, M., Boily, S., Diawara, Y., El Khakani, M.A., Gat, E., Jean, A., Lafontaine, H., Pépin, H., Voyer, J., Kieffer, J.C., Haghiri-Gosnet, A.M., Ladan, F.R., Ravet, M.F., Chen, Y., Rousseaux, F. (1992) X-ray mask development based on SiC membrane and W absorber, J. Vac. Sci. Technol. B10, 3191–3195.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Margot, J. et al. (1997). Magnetized Surface-Wave Discharges for Submicrometer Pattern Transfer. In: Williams, P.F. (eds) Plasma Processing of Semiconductors. NATO ASI Series, vol 336. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5884-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5884-8_24

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6486-6

  • Online ISBN: 978-94-011-5884-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics