Skip to main content

The Control of Catecholamine Secretion in Hagfishes

  • Chapter
The Biology of Hagfishes

Summary

The systemic heart, portal heart, and posterior cardinal vein of hagfishes store large quantities of catecholamine in chromaffin cells. However, unlike other vertebrates, the chromaffin tissue of hagfishes appear to lack extrinsic innervation. Although carbachol, a cholinergic agonist, elicits a dose-dependent release of catecholamines in situ, in vivo there is no evidence that the control of catecholamine release may be achieved through cholinergic mechanisms. Evidence presented in this chapter suggests that this may be achieved through hormonal and/or paracrine means by specific non-cholinergic secretagogues. While both serotonin and ACTH stimulate catecholamine secretion in situ, angiotensin II and histamine, potent secretagogues in other vertebrates, do not appear to elicit catecholamine release. In vivo and in situ evidence also suggests that adenosine may be an important modulator of catecholamine secretion. Although the specific mechanisms of catecholamine secretion during stress in vivo have yet to be characterized, serotonin, ACTH and adenosine may all be involved in the overall control of catecholamine release in hagfishes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Accordi, F. (1991) The chromaffin cells of urodele amphibians. J. Anat., 179, 1–8.

    PubMed  CAS  Google Scholar 

  • Augustinsson, K.-B., Fänge, R., Johnels, A. et al. (1956) Histological, physiological and biochemical studies on the heart of two cyclostomes, hagfish (Myxine) and lamprey (Lampetra). J. Physiol., 131, 257–276.

    PubMed  CAS  Google Scholar 

  • Axelrod, J. and Reisine, T.D. (1984) Stress hormones: their interaction and regulation. Science, 224, 452–459.

    Article  PubMed  CAS  Google Scholar 

  • Axelsson, M., Farrell, A.P. and Nilsson, S. (1990) Effects of hypoxia and drugs on the cardiovascular dynamics of the Atlantic hagfish, Myxine glutinosa. J. Exp. Biol., 151, 297–316.

    CAS  Google Scholar 

  • Bailly, Y., Dunel-Erb, S. and Laurent, P. (1992) The neuroepithelial cells of the fish gill filament: mdolamme-immunocytochemistry and innervation. Anat. Rec., 233, 143–161.

    Article  PubMed  CAS  Google Scholar 

  • Bernier, N.J. and Perry, S.F. (1996) Control of catecholamine and serotonin release from the chromaffin tissue of the Atlantic hagfish. J. Exp. Biol., 199, 2485–2497.

    PubMed  CAS  Google Scholar 

  • Bernier, N.J. and Perry, S.F. (1997) Angiotensins stimulate catecholamine release from the chromaffin tissue of the rainbow trout. Amer. J. Physiol. (In press).

    Google Scholar 

  • Bernier, N.J., Fuentes, J. and Randall, D.J. (1996) Adenosine receptor blockade and hypoxia tolerance in rainbow trout and Pacific hagfish. II. Effects on plasma catecholamins and erythrocytes. J. Exp. Biol., 199, 497–507.

    PubMed  CAS  Google Scholar 

  • Bloom, G., Östlund, E., Euler, U.S.v. et al. (1961) Studies on catecholamine-containing granules of specific cells in cyclostomes hearts. Acta Physiol. Scand., 53, Suppl. 185, 1–34.

    CAS  Google Scholar 

  • Borges, R. (1994) Histamine H1 receptor activation mediates the preferential release of adrenaline in the rat adrenal gland. Life Sciences, 54, 631–640.

    Article  PubMed  CAS  Google Scholar 

  • Bornstein, S.R., Gonzalez-Hernandez, J.A., Ehrhart-Bornstein, M. et al. (1994) Intimate contact of chromaffin and cortical cells within the human adrenal gland forms the cellular basis for important intraadrenal interactions. J. Clin. Endocrinol. Metab., 78, 225–233.

    Article  PubMed  CAS  Google Scholar 

  • Brownfield, M.S., Poff, B.C. and Holzwarth, M.A. (1985) Ultrastructural immunocytochemical colocalization of serotonin and PNMT in adrenal medullary vesicles. Histochemistry, 83, 41–46.

    Article  PubMed  CAS  Google Scholar 

  • Buckingham, J.C., Leach, J.H., Plisetskaya, E. et al. (1985) Corticotrophin-like bioactivity in the pituitary gland and brain of the Pacific hagfish, Eptatretus stoutii. Gen. Comp. Endocrinol., 57, 434–437.

    Article  CAS  Google Scholar 

  • Bunn, S.J., Sim, A.T.R., Herd, L.M. et al. (1995) Tyrosine hydroxylase phosphorylation in bovine adrenal chromaffin cells: the role of intracellular Ca2+ in the histamine H1 receptor-stimulated phosphorylation of Ser8, Ser19, Ser31, and Ser40. J. Neurochem., 64, 1370–1378.

    Article  PubMed  CAS  Google Scholar 

  • Burgoyne, R.D. (1991) Control of exocytosis in adrenal chromaffin cells. Biochim. Biophys. Acta., 1071, 174–202.

    Article  PubMed  CAS  Google Scholar 

  • Campbell, G. (1970) Autonomic nervous systems, in Fish Physiology, Vol. IV (eds W.S. Hoar and D.J. Randall), Academic Press, London, pp. 109–132.

    Google Scholar 

  • Carroll, R.G. and Opdyke, D.F. (1982) Evolution of angiotensin II-induced catecholamine release. Amer. J. Physiol., 243, R54–69.

    Google Scholar 

  • Chaouloff, F. (1993) Physiopharmacological interactions between stress hormones and central serotonergic systems. Brain Res. Rev., 18, 1–32.

    Article  PubMed  CAS  Google Scholar 

  • Chaouloff, F., Gunn, S.H. and Young, J.B. (1992) Central 5-hydroxytryptamine2 receptors are involved in the adrenal catecholamine-releasing and hyperglycemic effects of the 5-hydrox-ytryptarnine indirect agonist d-fenfluramine in the conscious rat. J. Pharmacol. Exp. Ther., 260, 1008–1016.

    PubMed  CAS  Google Scholar 

  • Chern, Y.-J., Bott, M., Chu, P.-J. et al. (1992) The adenosine analogue N6-L-phenylisopropy-ladenosine inhibits catecholamine secretion from bovine adrenal medulla cells by inhibiting calcium influx. J. Neurochem., 59, 1399–1404.

    Article  PubMed  CAS  Google Scholar 

  • Chern, Y.-J., Herrera, M., Kao, L.S. et al. (1987) Inhibition of catecholamine secretion from bovine chromaffin cells by adenine nucleotides and adenosine. J. Neurochem., 48, 1573–1576.

    Article  PubMed  CAS  Google Scholar 

  • Chritton, S.L., Dousa, M.K., Yaksh, T.. et al. (1991) Nicotinic-and muscarinic-evoked release of canine adrenal catecholamines and peptides. Amer. J. Physiol., 260, R589–99.

    PubMed  CAS  Google Scholar 

  • Critchley, J.A.J.H., Ellis, P., Henderson, C.G. et al. (1982) The role of the pituitary-adrenocortical axis in reflex responses of the adrenal medulla of the dog. J. Physiol., 323, 533–541.

    PubMed  CAS  Google Scholar 

  • Delarue, C., Leboulenger, F., Morra, M. et al. (1988) Immunohistochemical and biochemical evidence for the presence of serotonin in amphibian adrenal chromaffin cells. Brain Res., 459, 17–26.

    Article  PubMed  CAS  Google Scholar 

  • Douglas, W.W., Poisner, A.M. and Rubin, R.P. (1965) Efflux of adenine nucleotides from perfused adrenal glands exposed to nicotine and other chromaffin cell stimulants. J. Physiol., 183, 130–137.

    Google Scholar 

  • Dunel-Erb, S., Bailly, Y. and Laurent, P. (1982) Neuroepithelial cells in fish gill primary lamellae. J. Appl. Physiol., 53(6), 1342–1353.

    PubMed  CAS  Google Scholar 

  • Euler, U.S.v. and Fänge, R. (1961) Catecholamines in nerves and organs of Myxine glutinosa, Squalus acanthius, and Gadus callarias. Gen. Comp. Endocrinol., 1, 191–194.

    Article  CAS  Google Scholar 

  • Feniuk, W., Hare, J. and Humphrey, P.P.A. (1980) An analysis of the mechanism of 5-hydrox-ytryptamine-induced vasopressor responses in gangion-blocked anaesthetized dogs. J. Pharm. Pharmacol., 33, 155–160.

    Article  Google Scholar 

  • Fernhohn, B. and Olsson, R. (1969) A cytopharma-cological study of the Myxine adenohypophysis. Gen. Comp. Endocrinol., 13, 336–356.

    Article  Google Scholar 

  • Forster, M.E., Davison, W., Axelsson, M. et al. (1992) Cardiovascular responses to hypoxia in the hagfish, Eptatretus cirrhatus. Respir. Physiol., 88, 373–386.

    Article  CAS  Google Scholar 

  • Fritsche, R., Reid, S.G., Thomas, S. et al. (1993) Serotonin-mediated release of catecholamines in the rainbow trout Oncorhynchus mykiss. J. Exp. Biol., 178, 191–204.

    CAS  Google Scholar 

  • Furimsky, M., Moon, T.W. and Perry, S.F. (1996) Calcium signaling in isolated single chromaffin cells of the rainbow trout (Oncorhynchus mykiss). J. Comp. Physiol. B., 166, 396–404.

    Article  CAS  Google Scholar 

  • Greene, C.W. (1902) Contribution to the physiology of the California hagfish Polistrotema stoutii II. The absence of regulative nerves for the systemic heart. Amer. J. Physiol., 6, 318–324.

    Google Scholar 

  • Hardisty, M.W. (1979) Biology of the Cyclostomes, Chapman & Hall, London.

    Google Scholar 

  • Hirsch, E.F., Jellinek, M. and Cooper, T. (1964) Innervation of the systemic heart of the California hagfish. Circul. Res., 14, 212–217.

    Article  CAS  Google Scholar 

  • Holzwarth, M.A. and Brownfield, M.S. (1985) Serotonin coexists with epinephrine in rat adrenal medulary cells. Neuroendocrinology, 41, 230–236.

    Article  PubMed  CAS  Google Scholar 

  • Idler, D.R. and Burton, M.P.M. (1976) The pronephroi as the site of presumptive interrenal cells in the hagfish Myxine glutinosa L. Comp. Biochem. Physiol., 53A, 73–77.

    Article  Google Scholar 

  • Jensen, D. (1961) Cardioregulation in an aneural heart. Comp. Biochem. Physiol., 2, 181–201.

    Article  PubMed  CAS  Google Scholar 

  • Jensen, D. (1965) The aneural heart of the hagfish. Ann. N.Y. Acad. Sci., 127, 443–458.

    Article  PubMed  CAS  Google Scholar 

  • Jirikowski, G., Erhart, G., Grimmelikhuijzen, C.J.P. et al. (1984) FMRF-amide-like immunoreactivity in brain and pituitary of the hagfish Eptatretus burgeri (Cyclostomata). Cell Tissue Res., 237, 363–366.

    Article  PubMed  CAS  Google Scholar 

  • Johnsson, M. and Axelsson, M. (1996) Control of the systemic heart and the portal heart of Myxine glutinosa. J. Exp. Biol., 199, 1429–1434.

    PubMed  Google Scholar 

  • Johnsson, M., Axelsson, M., Davidson, W. et al. (1996) Effects of preload and afterload on the performance of the in situ perfused portal heart of the New Zealand hagfish Eptatretus cirrhatus. J. Exp. Biol., 199, 401–405.

    PubMed  Google Scholar 

  • Jönsson, A.-C. (1983) Catecholamine formation in vitro in the systemic and portal hearts of the Atlantic hagfish, Myxine glutinosa. Mol. Physiol., 3, 297–304.

    Google Scholar 

  • Jönsson, A.-C., Wahlqvist, I. and Hansson, T. (1983) Effects of hypophysectomy and cortisol on the catecholamine biosynthesis and catecholamine content in chromaffin tissue from rainbow trout, Salmo gairdneri. Gen. Comp. Endocrinol., 51, 278–285.

    Article  PubMed  Google Scholar 

  • Jørgensen, C.B. (1976) Sub-mammalian vertebrate hypothalamic-pituitary-adrenal interrelationships, in General, Comparative and Clincal Endocrinology of the Adrenal Cortex (eds I. Chester Jones and I.W. Henderson), Academic Press, London, pp. 143–206.

    Google Scholar 

  • Kumakura, K. (1984) Possible involvement of ATP and its metabolites in the function of adrenal chromaffin cells, in Dynamics of Neurotransmitter Function (ed. I. Hanin), Raven Press, New York, pp. 271–280.

    Google Scholar 

  • Lauweryns, j.M. and Van Lommel, A. (1982) Morphometric analysis of hypoxia-induced synaptic activity in intrapulmonary neuroep-ithelial bodies. Cell Tissue Res., 226, 210–214.

    Google Scholar 

  • Lefebvre, H., Contesse, V., Delarue, C. et al. (1992) Serotonin-induced stimulation of cortisol secretion from human adrenocortical tissue is mediated through activation of a serotonin4 receptor subtype. Neuroscience, 47, 999–1007.

    Article  PubMed  CAS  Google Scholar 

  • Lipke, D.W. and Olson, K.R. (1988) Distribution of angiotensin-converting enzyme-like activity in vertebrate tissues. Physiol. Zool., 61, 420–428.

    CAS  Google Scholar 

  • Livett, B.G. and Marley, P.D. (1993) Noncholinergic control of adrenal catecholamine secretion. J. Anat., 183, 277–289.

    PubMed  CAS  Google Scholar 

  • Mazzocchi, G., Malendowicz,.K., Markowska, A. et al. (1994) Effect of hypophysectomy on corti-cotropin-releasing hormone and adrenocorti-cotropin irnmunoreactivities in the rat adrenal gland. Mol. Cell. Neuroscl., 5, 345–349.

    Article  CAS  Google Scholar 

  • Nilsson, S. (1983) Autonomic Nerve Function in the Vertebrates, Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Nishimura, H. (1985) Endocrine control of renal handling of solutes and water in vertebrates. Renal Physiol., 8, 279–300.

    PubMed  CAS  Google Scholar 

  • Nozaki, M. (1985) Tissue distribution of hormonal peptides in primitive fishes, in Evolutionary Biology of Primitive Fishes (eds R.E. Foreman, A. Gorbman, J.M. Dodd and R. Olsson), Plenum Press, New York, pp. 433–454.

    Chapter  Google Scholar 

  • Opdyke, D.F., Carroll, R.G. and Keller, N.E. (1982) Catecholamine release and blood pressure changes induced by exercise in dogfish. Amer. J. Physiol., 242, R306–10.

    PubMed  CAS  Google Scholar 

  • Östlund, E. (1954) The distribution of cate-cholamines in lower animals and their effect on the heart. Acta Physiol., Scand., 31, Suppl 12, 1–67.

    Google Scholar 

  • Östlund, E., Bloom, G., Adams-Ray, J. et al. (1960) Storage and release of catecholamines, and the occurrence of a specific submicroscopic granulation in hearts of cyclostomes. Nature, 188, 324–325.

    Article  PubMed  Google Scholar 

  • Ottaviani, E., Caselgrandi, E., Petraglia, F. et al. (1992) Stress response in the freshwater snail Planorbarius corneus (L.) (Gastropoda, Pulmonata): interaction between CRF, ACTH, and biogenic amines. Gen. Comp. Endocrinol., 87, 354–360.

    Article  PubMed  CAS  Google Scholar 

  • Perry, S.F. and Reid, S.D. (1992) Relationship between blood O2 content and catecholamine levels during hypoxia in rainbow trout and American eel. Amer. J. Physiol., 32, R240–9.

    Google Scholar 

  • Perry, S.F., Fritsche, R., Kinkead, R. et al. (1991) Control of catecholamine release in vivo and in situ in the Atlantic cod (Gadus morhua) during hypoxia. J. Exp. Biol., 155, 549–566.

    CAS  Google Scholar 

  • Perry, S.F., Fritsche, R. and Thomas, S. (1993) Storage and release of catecholamine from the chromaffin tissue of the Atlantic hagfish Myxine glutinosa. J. Exp. Biol., 183, 165–1

    CAS  Google Scholar 

  • Perry, S.F., Kinkead, R., Gallaugher, P. et al. (1989) Evidence that hypoxemia promotes catecholamine release during hypercapnic acidosis in rainbow trout (Salmo gairdneri). Respir. Physiol., 77, 351–364.

    Article  PubMed  CAS  Google Scholar 

  • Randall, D.J. and Perry, S.F. (1992) Catecholamines, in Fish Physiology, Vol. XIIB (eds D.J. Randall, W.S. Hoar and A. Farrell), Academic Press, New York, pp. 255–300.

    Google Scholar 

  • Reid, I.A. (1992) Interactions between ANG II, sympathetic nervous system, and baroreceptor reflexes in regulation of blood pressure. Amer. J. Physiol., 262, E763–78.

    PubMed  CAS  Google Scholar 

  • Reid, S.G. and Perry, S.F. (1994) Storage and differential release of catecholamines in rainbow trout (Oncorhynchus mykiss) and American eel (Anguilla rostrata). Physiol Zool., 67, 216–237.

    CAS  Google Scholar 

  • Reid, S.G., Fritsche, R. and Jönsson, A.-C. (1995) Immunohistochemical localization of bioactive peptides and amines associated with the chro-maffin tissue of five species of fish. Cell Tissue Res., 280, 499–512.

    Article  PubMed  CAS  Google Scholar 

  • Reid, S.G., Vijayan, M.M. and Perry, S.F. (1996) Modulation of catecholamine storage and release by the pituitary-interrenal axis in the rainbow trout (Oncorhynchus mykiss). J. Comp. Physiol. B., 165, 665–676.

    Article  PubMed  CAS  Google Scholar 

  • Reite, O.B. (1969) The evolution of vascular smooth muscle responses to histamine and 5-hydrox-ytryptamine. I. Occurrence of stimulatory actions in fish. Acta Physiol. Scand., 75, 221–239.

    Article  PubMed  CAS  Google Scholar 

  • Silldorff, E.P. and Stephens, G.A. (1992) The pres-sor response to exogenous angiotensin I and its blockade by angiotensin II analogues in the American alligator. Gen. Comp. Endocrinol., 87, 141–148.

    Article  PubMed  CAS  Google Scholar 

  • Sundin, L., Axelsson, M., Nilsson, S. et al. (1994) Evidence of regulatory mechanisms for the distribution of blood between the arterial and the venous compartments in the hagfish gill pouch. J. Exp. Biol., 190, 281–286.

    PubMed  Google Scholar 

  • Taylor, A.A. (1977) Comparative physiology of the renin-angiotensin system. Fedn. Proc., 36, 1776–1780.

    CAS  Google Scholar 

  • Thomas, S., Perry, S.F., Pennec, Y. et al. (1992) Metabolic alkalosis and the response of the trout, Salmo fario, to acute severe hypoxia. Respir. Physiol, 87, 91–104.

    Article  PubMed  CAS  Google Scholar 

  • Tseng, C.-J., Ho, W.-Y., Lin, H.-C. et al. (1994) Modulatory effects of endogenous adenosine on epinephrine secretion from the adrenal medulla of the rat. Hypertension, 24, 714–718.

    Article  PubMed  CAS  Google Scholar 

  • Wales, N.A.M. (1988) Hormone studies in Myxine glutinosa: effects of the eicosanoids arachidonic acid, Prostaglandin E1 E2, A2, F2a, thromboxane B2 and indomethacin on plasma cortisol, blood pressure, urine flow and electrolyte balance. J. Comp. Physiol. B., 158, 621–626.

    Article  PubMed  CAS  Google Scholar 

  • Wan, D.C.-C., Marley, P.D. and Livett, B.G. (1989) Histamine activates proenkephalin A mRNA but not phenylethanolamine N-methyltrans-ferase mRNA expression in cultured bovine adrenal chromaffin cells. European J. Pharmacol., 172, 117–129.

    Article  CAS  Google Scholar 

  • Wilson, J.X. (1984) Coevolution of the renin-angiotensin system and the nervous control of blood circulation. Can. J. Zool., 62, 137–147.

    Article  CAS  Google Scholar 

  • Wurtman, R.J., Axelrod, J., Veseli, E.S. et al. (1968) Species differences in inducibility of phenylethanolamine-N-methyltransferase. Endocrinology, 82, 584–590.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bernier, N.J., Perry, S.F. (1998). The Control of Catecholamine Secretion in Hagfishes. In: The Biology of Hagfishes. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5834-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5834-3_27

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6465-1

  • Online ISBN: 978-94-011-5834-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics