Skip to main content

The Gills of Hagfishes

  • Chapter

Summary

The gills of hagfishes form lens-shaped pouches, rather than holobranches that characterize those of lampreys and gnathostome fishes. Their internal surface is enlarged by radial folds, which extend between the medial and lateral walls of the pouch and contain the branchial microcirculation. Blood and water flow through the gills are arranged in a countercurrent system, thereby facilitating gas exchange.

The circulation of the hagfish gills consists of an arterio-arterial and an arteriovenous component. The arterio-arterial circulation connects the afferent and efferent branchial arteries. The arteriovenous circulation comprises an intrabranchial sinusoid system, which is supplied by the arterio-arterial circulation through arteriovenous anastomoses and connected to the peribranchial sinus through gaps in the muscle layer of the gill pouch.

The majority of the epithelial surface is formed by mucus-secreting pavement cells. In the lateral half of the gill pouch, mitochondria-rich (MR) cells are intercalated between the pavement cells, which are characterized by an extensive amplification of the basolat-eral cell membrane and, in freeze-fracture replicas, by assemblies of linear arrays of particles and fibrils in the apical cell membrane. Since the MR cells show strong histochemical reactions for both Na+/K+- ATPase and carbonic anhydrase, they may be engaged in ion transport and /or acid-base regulation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adam, H. and Strahan, R. (1963) Systematics and geographical distribution in myxinoids. In The Biology of Myxine (eds A. Brodai and R. Fänge), Universitetsforlaget, Oslo, pp. 3–8.

    Google Scholar 

  • Akisaka, T., Yoshida, H., Kogaya, Y. et al. (1990) Membrane modifications in chick osteoclats revealed by freeze fracture replicas. American Journal of Anatomy, 188, 381–392.

    Article  PubMed  CAS  Google Scholar 

  • Alt, J.M., Stolte, H., Eisenbach, G.M. et al. (1980) Renal electrolyte and fluid excretion in the Atlantic hagfish Myxine glutinosa. Journal of Experimental Biology, 91, 323–330.

    Google Scholar 

  • Andrews, P.M. (1976) Microplicae: characteristic ridge-like folds of the plasmalemma. Journal of Cell Biology, 68, 420–429.

    Article  PubMed  CAS  Google Scholar 

  • Bartels, H. (1984) Orthogonal arrays of particles in the gill epithelium of the Atlantic hagfish, Myxine glutinosa. Cell and Tissue Research, 238, 657–659.

    Article  Google Scholar 

  • Bartels, H. (1985) Assemblies of linear arrays of particles in the apical plasma membrane of mitochondria-rich cells in the gill epithelium of the Atlantic hagfish (Myxine glutinosa). Anatomical Record, 211, 229–238.

    Article  PubMed  CAS  Google Scholar 

  • Bartels, H. (1988) Intercellular junctions in the gill epithelium of the Atlantic hagfish, Myxine glutinosa. Cell and Tissue Research, 254, 573–583.

    Article  PubMed  CAS  Google Scholar 

  • Bartels, H. (1989) Freeze-fracture study of the pavement cell in the lamprey gill epithelium. Analogy of membrane structure with the granular cell in the amphibian urinary bladder. Biology of the Cell, 66, 165–171.

    PubMed  CAS  Google Scholar 

  • Bartels, H. and Decker, B. (1985) Communicating junctions between pillar cells in the gills of the Atlantic hagfish, Myxine glutinosa. Experientia, 41, 1039–1040.

    Article  Google Scholar 

  • Bartels, H. and Miragall, F. (1986) Orthogonal arrays of particles in the plasma membrane of pneumocytes. Journal of Submicroscopic Cytology, 18, 637–646.

    PubMed  CAS  Google Scholar 

  • Bartels, H. and Potter, I.C (1991) Structural changes in the zonulae occludentes of the chloride cells of young adult lampreys following acclimation to seawater. Cell and Tissue Research, 265, 447–457.

    Article  Google Scholar 

  • Bartels, H., Moldenhauer, A. and Potter, I.C. (1996) Changes in the apical surface of chloride cells following acclimation of lampreys to seawater. American Journal of Physiology, 270, R125–R133.

    PubMed  CAS  Google Scholar 

  • Bellamy, D. and Chester Jones, I. (1961) Studies on Myxina glutinosa. I. The chemical composition of the tissues. Comparative Biochemistry and Physiology, 3, 175–183.

    Article  PubMed  CAS  Google Scholar 

  • Berridge, M.J. and Oschman, J.L. (1972) Transporting Epithelia, Academic Press, New York, London.

    Google Scholar 

  • Bettex-Galand, M. and Hughes, G.M. (1973) Contractile filamentous material in the pillar cells of fish gills. Journal of Cell Science, 13, 359–370.

    Google Scholar 

  • Bourne, R.H. (1892) On the presence of a branchial basket in Myxine glutinosa. Proceedings of the Zoological Society (London) 1892, 706–708.

    Google Scholar 

  • Brown, D. (1989) Membrane recycling and epithelial cell function. American Journal of Physiology, 256, F1–F12.

    PubMed  CAS  Google Scholar 

  • Brown, D., Ilic, V. and Orci, L. (1978) Rod-shaped particles in the plasma membrane of the mitochondria-rich cell of amphibian epidermis. Anatomical Record, 192, 269–276.

    Article  PubMed  CAS  Google Scholar 

  • Brown, D., Gluck, S. and Hartwig, J. (1987) Structure of the novel membrane-coating material in proton-secreting epithelial cells and identification as an H+ ATPase. Journal of Cell Biology, 105, 1637–1648.

    Article  PubMed  CAS  Google Scholar 

  • Brown, D., Katsura, T., Kawashima, M. et al. (1995) Cellular distribution of the aquaporins: a family of water channel proteins. Histochemistry and Cell Biology, 104, 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Cholette, C., Gagnon, A. and Germain, P. (1970) Isosmotic adaption in Myxine glutinosa L. I. Variations of some parameters and role of the amino acid pool of the muscle cells. Comparative Biochemistry and Physiology, 33, 333–346.

    Article  CAS  Google Scholar 

  • Cole, F.J. (1912) A monograph on the general morphology of the myxinoid fishes, based on a study of Myxine. Part IV. On some peculiarities of the afferent and efferent branchial arteries of Myxine. Transactions of the Royal Society, Edinburgh, 48, 215–230.

    Google Scholar 

  • Cole, F.J. (1925) A monograph on the general morphology the myxinoid fishes, based on a study of Myxine. Part VI. The morphology of the vascular system. Transactions of the Royal Society, Edinburgh, 54, 309–342.

    Google Scholar 

  • Dendy, L.A., Philpott, C.W. and Deter, R.L. (1973) Localization of Na+, K+-ATPase and other enzymes in teleost pseudobranch. II. Morphological characterization of intact pseudobranch, subcellular fractions and plasma membrane substructure. Journal of Cell Biology, 57, 689–703.

    Article  PubMed  CAS  Google Scholar 

  • Drenckhahn, D., Schlüter, K., Allen, D.P. et al. (1985) Colocalization of band 3 with ankyrin and spectrin at the basal membrane of intercalated cells in the rat kidney. Science, 230, 1287–1289.

    Article  PubMed  CAS  Google Scholar 

  • Dunel-Erb, S., Bailly, Y., Laurent, P. (1982) Neuroepithelial cells in fish gill primary lamellae. Journal Applied Physiology, 53, 1342–1353.

    Article  CAS  Google Scholar 

  • Elger, M. (1987) The branchial circulation and the gill epithelia in the Atlantic hagfish, Myxine glutinosa L. Anatomy and Embryology, 175, 489–504.

    Article  PubMed  CAS  Google Scholar 

  • Ellory, J.C., Wolowyk, M.W. and Young, J.D. (1987) Hagfish (Eptatretus stoutii) erythrocytes show minimal chloride transport activity. Journal of Experimental Biology, 129, 377–383.

    PubMed  CAS  Google Scholar 

  • Ernst, S.A., Dodson, W.B., Karnaky, K.J. Jr (1980) Structural diversity of occluding junctions in the low-resistance chloride-secreting opercular epithelium of seawater-adapted killifish (Fundulus heteroclitus). Journal of Cell Biology, 87, 488–497.

    Article  PubMed  CAS  Google Scholar 

  • Evans, D.H. (1984) Gill Na+/H+ and Cl-/HCO3-exchange systems evolved before the vertebrates entered fresh water. Journal of Experimental Biology, 113, 465–469.

    PubMed  CAS  Google Scholar 

  • Fels, L., Raguse-Degener, G., Stolte, H. (1989) The Archinephron of Myxine glutinosa L. (Cyclostoma), in Structure and Function of the Kidney (ed. R.K.H. Kinne), Comparative Physiology, Vol. 1, Karger, Basel, pp. 73–152.

    Google Scholar 

  • Flöge, J., Stolte, H. and Kinne, R. (1984) Presence of a sodium-dependent D-glucose transport system in the kidney of the Atlantic hagfish (Myxine glutinosa). Journal of Comparative Physiology, B154, 355–364.

    Google Scholar 

  • Gebert, A. and Bartels, H. (1995) Linear arrays of intramembranous particles characterize a subpopulation of epithelial cells in the rabbit caecum. Journal of Submicroscopic Cytology and Pathology, 27, 125–127.

    PubMed  CAS  Google Scholar 

  • Hardisty, M.W. (1979) Biology of Cyclostomes, Chapman & Hall, London.

    Google Scholar 

  • Hatae, T. and Benedetti, E.L. (1982) Mosaic structure in the plasma membrane: spiral arrays of subunits in the cytoplasmic tubules of lamprey chloride cells. Journal of Cell Science, 56, 441–452.

    PubMed  CAS  Google Scholar 

  • Hofbauer, M. (1934) Anatomischer und histologischer Bau der Kiemensäcke von Myxine glutinosa. Biologia Generalis, 12, 330–348.

    Google Scholar 

  • Hootman, S.R. and Philpott, C.W. (1979) Ultracytochemical localization of Na+, K+-activated ATPase in chloride cells from the gills of a euryhaline teleost. Anatomical Record, 193, 99–129.

    Article  PubMed  CAS  Google Scholar 

  • Hughes, G.M. (1984) General anatomy of the gills. In Fish Physiology, Vol. 10, Part A. (eds W.S. Hoar and D.J. Randall), Academic Press, Orlando, pp. 1–72.

    Google Scholar 

  • Hughes, G.M. and Morgan, M. (1973) The structure of fish gills in relation to their respiratory function. Biological Review, 48, 419–475.

    Article  Google Scholar 

  • Humbert, F., Pricam, C., Perrelet, A. et al. (1975) Specific plasma membrane differentiations in the cells of the kidney collecting tubule. Journal of Ultrastructure Research, 52, 13–20.

    Article  PubMed  CAS  Google Scholar 

  • Jakobshagen, E. (1920) Die Homologie der Wirbeltierkiemen. Jenaische Zeitschrift für Naturwissenschaften, 57, 87–142.

    Google Scholar 

  • Kamiya, M. (1972) Sodium-potassium-activated adenosine-triphosphatase in isolated chloride cells from eel gills, comparative Biochemistry and physiology, 43B, 611–617.

    Google Scholar 

  • Karnaky, K.J. Jr (1986) Structure and function of the chloride cell of Fundulus heteroclitus and other teleosts. American Zoologist, 26, 209–224.

    CAS  Google Scholar 

  • Karnaky, K.J. Jr, Ernst, S.A. and Philpott, C.W. (1976a) Teleost chloride cell. I. Response of pupfish Cyprinodon variegatus gill Na, K-ATPase and chloride cell fine structure to various high salinity environments. Journal of Cell Biology, 70, 144–156.

    Article  PubMed  CAS  Google Scholar 

  • Karnaky, K.J. Jr, Kinter, L.B., Kinter, W.B. et al. (1976b) Teleost chloride cell. II. Auto-radi-ographic localization of gill Na, K-ATPase in killifish Fundulus heteroclitus adapted to low and high salinity environments. Journal of Cell Biology, 70, 157–177.

    Article  PubMed  CAS  Google Scholar 

  • Katz, U. and Gabbay, S. (1988) Mitochondria-rich cells and carbonic anhydrase content of toad skin epithelium. Cell and Tissue Research, 251, 425–431.

    Article  PubMed  CAS  Google Scholar 

  • Kirschner, L.B. (1983) Sodium chloride absorption across the body surface: frog skins and other epithelia. American Journal of Physiology, 244, R429–R443.

    PubMed  CAS  Google Scholar 

  • Krogh, A. (1939) Osmotic Regulation in Aquatic Animals, Cambridge University Press, London.

    Google Scholar 

  • Laurent, P. (1984) Gill internal morphology, in Fish Physiology, Vol. 10, Part A (eds W.S. Hoar and D.J. Randall), Academic Press, Orlando, pp. 73–183.

    Google Scholar 

  • Lewis, S.V. and Potter, I.C. (1982) A light and electron microscope study of the gills of larval lampreys (Geotria australis) with particular reference to the water—blood pathway. Journal of Zoology London, 198, 157–176.

    Article  Google Scholar 

  • Lutz, P. (1975) Adaptive and evolutionary aspects of the ionic content of fishes. Copeia, 1975, 369–373.

    Article  Google Scholar 

  • Madara, J.L. (1982) Cup cells: structure and distribution of a unique class of epithelial cells in guinea pig, rabbit and monkey small intestine. Gastroenterology, 83, 981–994.

    PubMed  CAS  Google Scholar 

  • Mallatt, J. (1984) Early vertebrate evolution: pharyngeal structure and the origin of gnathos-tomes. Journal of Zoology London, 204, 169–183.

    Article  Google Scholar 

  • Mallatt, J. and Paulsen, C. (1986) Gill ultrastructure of the Pacific hagfish Eptatretus stoutii. American Journal of Anatomy, 177, 243–269.

    Article  PubMed  CAS  Google Scholar 

  • Mallatt, J., Conley, D.M. and Ridgway, R.L. (1987) Why do hagfish have gill ‘chloride cells’ when they need not regulate plasma NaCl concentration? Canadian Journal of Zoology, 65, 1956–1965.

    Article  Google Scholar 

  • Marinelli, W. and Strenger, A. (1954) Vergleichende Anatomie und Morphologie der Wirbeltiere, Vol. 1: Lampetra fluviatilis L, Deuticke, Wien.

    Google Scholar 

  • Marinelli, W. and Strenger, A. (1956) Vergleichende Anatomie und Morphologie der Wirbeltiere, Vol. 2: Myxine glutinosa L, Deuticke, Wien.

    Google Scholar 

  • Mattison, A.G.M. and Fänge, R. (1973) Light-and electron microscopic observations on the blood cells of the Atlantic hagfish, Myxine glutinosa (L.). Acta Zoologica, 58, 205–221.

    Article  Google Scholar 

  • McFarland, W. and Munz, F.W. (1965) Regulation of body weight and serum composition by hagfish in various media. Comparative Biochemistry and Physiology, 14, 383–398.

    Article  PubMed  CAS  Google Scholar 

  • Morris, R. (1965) Studies on salt and water balance in Myxine glutinosa (L.). Journal of Experimental Biology, 42, 359–371.

    CAS  Google Scholar 

  • Müller, J. (1845) Untersuchungen über die Eingeweide der Fische. Schluß der Vergleichenden Anatomie der Myxinoiden. Abhandlungen der Akademie der Wissenschaften Berlin.

    Google Scholar 

  • Munz, F.W. and McFarland, W.N. (1964) Regulatory functions of a primitive vertebrate kidney. Comparative Biochemistry and Physiology, 13, 381–400.

    Article  PubMed  CAS  Google Scholar 

  • Nakao, T. (1974) Fine structure of the agranular cytoplasmic tubules in the lamprey chloride cells. Anatomical Record, 178, 49–62.

    Article  PubMed  CAS  Google Scholar 

  • Neutra, M. (1979) Linear arrays of intramembrane particles on microvilli in primate large intestine. Anatomical Record, 193, 367–382.

    Article  PubMed  CAS  Google Scholar 

  • Ohnishi, S.T. and Asai, H. (1985) Lamprey erythrocytes lack glycoproteins and anion transport. Comparative Biochemistry and Physiology, 81B, 405–407.

    CAS  Google Scholar 

  • Peek, W.D. and Youson, J.H. (1979) Ultrastructure of chloride cells in young adults of the anadromous sea lamprey, Petromyzon marinus L., in fresh water and during adaptation to sea water. Journal of Morphology, 160, 143–163.

    Article  PubMed  CAS  Google Scholar 

  • Philpott, C.W. (1966) The use of horseradish peroxidase to demonstrate functional continuity between the plasmalemma and the unique tubular system of the chloride cell. Journal of Cell Biology, 31, 86.

    Google Scholar 

  • Pohla, H., Lametschwandtner, A. and Adam, H. (1977) Die Vaskularisation der Kiemen von Myxine glutinosa L. (Cyclostomata). Zoologica Scripta, 6, 331–341.

    Article  Google Scholar 

  • Rauther, M. (1935) Zur Kenntnis der Myxinoiden-Kiemen. Gegenbaurs Morphologisches Jahrbuch, 75, 613–633.

    Google Scholar 

  • Rick, R., Dörge, A., v. Arnim, E. et al. (1978) Electron microprobe analysis of frog skin epithelium: evidence for a syncytial sodium transport compartment. Journal of Membrane Biology, 39, 313–331.

    Article  PubMed  CAS  Google Scholar 

  • Ritch, R. and Philpott, C.W. (1969) Repeating particles associated with an electrolyte-transport membrane. Experimental Cell Research, 55, 17–24.

    Article  PubMed  CAS  Google Scholar 

  • Robertson, J.D. (1954) The chemical composition of the blood of some aquatic chordates, including members of the Tunicata, Cyclostomata and Osteichthyes. Journal of Experimental Biology, 31, 424–442.

    CAS  Google Scholar 

  • Robertson, J.D. (1974) Osmotic and ionic regulation in cyclostomes, in Chemical Zoology, Vol. 8 (eds M. Florkin and B.T. Scheer), Academic Press, New York, pp. 149–193.

    Google Scholar 

  • Rosen, S. (1972) Localization of carbonic anhydrase activity in turtle and toad urinary bladder mucosa. Journal of Histochemistry Cytochemistry, 20, 696–702.

    Article  PubMed  CAS  Google Scholar 

  • Rosen, S. and Friedley, N.J. (1973) Carbonic anhydrase activity in Rana pipiens skin: biochemical and histochemical analysis. Histochemistry, 36, 1–4.

    Article  PubMed  CAS  Google Scholar 

  • Sardet, C., Pisam, M. and Maetz, J. (1979) The surface epithelium of teleostean fish gills. Cellular and junctional adaptations of the chloride cell in relation to salt adaptation. Journal of Cell Biology, 80, 96–117.

    Article  PubMed  CAS  Google Scholar 

  • Sargent, J.R., Thomson, A.J. and Bornancin, M. (1975) Activities and localization of succinic dehydrogenase and Na+/K+-activated adeno-sine triphosphatase in the gills of fresh water and sea water eels (Anguilla anguilla). Comparative Biochemistry and Physiology, 51B, 75–79.

    Google Scholar 

  • Schuster, V.L., Bonsib, S.M. and Jennings, M.L. (1986) Two types of collecting duct mitochondria-rich (intercalated) cells: lectin and Band 3 cytochemistry. American Journal of Physiology, 251, C347–C355.

    PubMed  CAS  Google Scholar 

  • Smith, D.G. and Chamley-Champbell, J. (1981) Localization of smooth-muscle myosin in branchial pillar cells of snapper (Chrysophis auratus) by immunofluorescence histochemistry. Journal of Experimental Zoology, 215, 121–124.

    Article  PubMed  CAS  Google Scholar 

  • Sperry, D.G. and Wassersug, R.J. (1976) A proposed function of microridges on epithelial cell. Anatomical Record, 185, 253–258.

    Article  PubMed  CAS  Google Scholar 

  • Steinmetz, P.R. (1986) Cellular organization of urinary acidification. American Journal of Physiology, 251, F173–F18

    PubMed  CAS  Google Scholar 

  • Stetson, D.L. and Steinmetz, P.R. (1985) α and β types of carbonic anhydrase-rich cells in turtle bladder. American Journal of Physiology, 249, F553–F565.

    PubMed  CAS  Google Scholar 

  • Stetson, D.L. and Steinmetz, P.R. (1986) Correlation between apical intramembrane particles and H+ secretion rates during CO2 stimulation in turtle bladder. Pflügers Archiv, 407, S80–S84.

    Article  PubMed  Google Scholar 

  • Tomonaga, S., Hirokane, T. and Awaya, K. (1973) Lymphoid cells in the hagfish. Zoological Magazine Tokyo, 82, 133–135.

    Google Scholar 

  • Tomonaga, S., Sakai, K., Tashiro, J. et al. (1975) High-walled endothelium in the gills of the hagfish. Zoological Magazine Tokyo, 84, 151–155.

    Google Scholar 

  • Tufts, B.L. and Boutilier, R.G. (1989) The absence of rapid chloride /bicarbonate exchange in lamprey erythrocytes: implications for CO2 transport and ion distributions between plasma and erythrocytes in the blood of Petromyzon marinus. Journal of Experimental Biology, 144, 565–576.

    Google Scholar 

  • Verbavatz, J.-M., Van Hoek, A.N., Ma, T. et al. (1994) A 28 kDa sarcolemmal antigen in kidney principal cell basolateral membranes: relationship to orthogonal arrays and MIP26. Journal of Cell Science, 107, 1083–1094.

    PubMed  CAS  Google Scholar 

  • Wade, J.B. (1978) Membrane structural specializations of the toad urinary bladder revealed by the freeze-fracture technique. III. Location, structure and Vasopressin dependence of intramembrane particle arrays. Journal of Membrane Biology, 40, 281–296.

    Article  PubMed  CAS  Google Scholar 

  • Worthington, J. (1905) Contribution to our knowledge of myxinoids. American Naturalist, 39, 625–663.

    Article  Google Scholar 

  • Youson, J.H., Freeman, P.A. (1976) Morphology of the gills of larval and parasitic adult sea lamprey, Petromyzon marinus L. Journal of Morphology, 149, 73–104.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Additional information

This paper is dedicated to Prof. Dr. h.c. Andreas Oksche on the occasion of his 70th birthday.

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bartels, H. (1998). The Gills of Hagfishes. In: The Biology of Hagfishes. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5834-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5834-3_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6465-1

  • Online ISBN: 978-94-011-5834-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics