Skip to main content

Part of the book series: Plant Breeding ((PLBR))

  • 505 Accesses

Abstract

An understanding of the principles of selection theory is essential if the importance of quantitative and ecological genetics in plant breeding is to be fully appreciated. These principles will therefore be enunciated, and the impact of competition on selection discussed. Finally, we will examine the role of molecular markers in the selection of quantitative traits. But first we need some definitions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abelson, P.H. (1990) Hybrid corn. Science, 249, 837.

    Article  PubMed  CAS  Google Scholar 

  • Arús, P. and Moreno-González, J. (1993) Marker-assisted selection, in Plant Breeding (eds M.D. Hayward, N.O. Bosemark and I. Romagosa), Springer Science+Business Media Dordrecht, London, pp. 314–331.

    Chapter  Google Scholar 

  • Baker, R.J. (1986) Selection Indices in Plant Breeding. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Beavis, W.D., Grant, D., Albertsen, M. and Fincher, R. (1991) Quantitative trait loci for plant height in four maize populations and their associations with qualitative genetic loci. Theoretical and Applied Genetics, 83, 141–145.

    Article  Google Scholar 

  • Bos, I. and Caligari, P.D.S. (1995) Selection Methods in Plant Breeding. Springer Science+Business Media Dordrecht, London.

    Google Scholar 

  • Botstein, D., White, R.L., Skolnick, M. and Davies, R.W. (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics, 32, 314–331.

    PubMed  CAS  Google Scholar 

  • Breese, E.L. (1969) The measurement and significance of genotype-environment interactions in grasses. Heredity, 24, 27–44.

    Article  Google Scholar 

  • Breese, E.L. and Mather, K. (1957) The organisation of poly genie activity within a chromosome of Drosophila. 1. Hair characters. Heredity, 11, 373–395.

    Article  Google Scholar 

  • Caligari, P.D.S. (1980) Competitive interactions in Drosophila melanogaster. Heredity, 45, 219–231.

    CAS  Google Scholar 

  • Ceccarelli, S. and Grando, S. (1993) From conventional plant breeding to molecular biology. International Crop Science I, Crop Science Society of America, Madison, Wisconsin, USA, pp. 533–537.

    Google Scholar 

  • Cockerham, C.C. (1986) Modifications in estimating the number of genes for a quantitative trait. Genetics, 114, 659–664.

    PubMed  CAS  Google Scholar 

  • Connell, J.H. (1983) On the prevalence and relative importance of interspecific competition: evidence from field experiments. American Naturalist, 122, 661–696.

    Article  Google Scholar 

  • Dudley, J.W. (1993) Molecular markers in plant improvement: Manipulation of genes affecting quantitative traits. Crop Science, 33, 660–668.

    Article  CAS  Google Scholar 

  • Dudley, J.W., Lambert, R.J. and Alexander, D.E. (1974) Seventy Generations of Selection for Oil and Protein Concentration in the Maize Kernel. Crop Science Society of America, Madison, Wisconsin, USA.

    Google Scholar 

  • Elston, R.C. (1963) A weight free index for the purpose of ranking or selection with respect to several traits at a time. Biometrics, 19, 85–97.

    Article  Google Scholar 

  • Falconer, D.S. (1989) Introduction to Quantitative Genetics, 3rd edn. Longman, Harlow.

    Google Scholar 

  • Fehr, W.R. (1987) Principles of Cultivar Development, Vol.I. Macmillan, New York.

    Google Scholar 

  • Gauch, H.G. Jr. and Zobel, R.W. (1996) Optimal replication in selection experiments. Crop Science, 36, 838–843.

    Article  Google Scholar 

  • Giovannoni, J.J., Wing, R.A., Ganal, M.W. and Tanksley, S.D. (1991) Isolation of molecular markers from specific chromosomal intervals using DNA pools from existing mapping populations. Nucleic Acids Research, 19, 6553–6558.

    Article  PubMed  CAS  Google Scholar 

  • Goldringer, I., Brabant, P. and Kempton, R.A. (1994) Adjustment for competition between genotypes in single-row-plot trials of winter wheat (Triticum aes-tivum). Plant Breeding, 112, 294–300.

    Article  Google Scholar 

  • Graner, A., Jahoor, A., Schondelmaier, J., Siedler, H., Pillen, K., Fischbeck, G., Wenzel, G. and Herrmann, R.G. (1991) Construction of an RFLP map of bar-ley. Theoretical and Applied Genetics, 83, 250–256.

    Article  Google Scholar 

  • Hanson, W.D. (1963) Heritability, in Statistical Genetics and Plant Breeding (eds W.D. Hanson and H.F. Robinson), National Academy of Sciences-National Research Council Publication 982, pp. 125–140.

    Google Scholar 

  • Hazel, L.N. (1943) The genetic basis for constructing selection indices. Genetics, 28, 476–490.

    PubMed  CAS  Google Scholar 

  • Heun, M. (1992) Mapping quantitative powdery mildew resistance of barley using a restriction fragment length polymorphism map. Genome, 35, 1019–1025.

    Article  CAS  Google Scholar 

  • Hill, J. (1990) The three C’s — competition, coexistence and coevolution — and their impact on the breeding of forage crop mixtures. Theoretical and Applied Genetics, 79, 168–176.

    Article  Google Scholar 

  • Hill, J. (1996) Breeding components for mixture performance. Euphytica, 92, 135–138.

    Article  Google Scholar 

  • Hill, J. and Michaelson-Yeates, T.P.T. (1988) The measurement and analysis of competitive ability among populations of white clover and perennial ryegrass. Theoretical and Applied Genetics, 76, 361–368.

    Article  Google Scholar 

  • Hill, J., Mather, K. and Caligari, P.D.S. (1987) Analysis of competitive ability among genotypes of perennial ryegrass. II. Effect upon dry matter production. Euphytica, 36, 109–115.

    Article  Google Scholar 

  • Jansen, R.C. (1994) Mapping of quantitative trait loci by using genetic markers: an overview of biometrical methods, in Biometrics in Plant Breeding (eds J.W. van Oijen and J. Jansen), Proceedings of the Ninth Meeting of the Eucarpia Section Biometrics in Plant Breeding, Wageningen, The Netherlands, pp. 116–124.

    Google Scholar 

  • Jansen, R.C. and Stam, P. (1994) High resolution of quantitative traits into multiple loci via interval mapping. Genetics, 136, 1447–1455.

    PubMed  CAS  Google Scholar 

  • Jansen, R.C., van Ooijen, J.W., Stam, P., Lister, C. and Dean, C. (1995) Genotype-by-environment interaction in genetic mapping of multiple quantitative trait loci. Theoretical and Applied Genetics, 91, 33–37.

    Article  CAS  Google Scholar 

  • Johannsen, W. (1913) Elemente der exakten Erblichkeitslehre, 2nd edn. Gustav Fischer, Jena.

    Google Scholar 

  • Jung, C., Kleine, M., Fischer, F. and Herrmann, R.G. (1990) Analysis of DNA from a Beta procumbens chromosome fragment in sugar beet carrying a gene for nematode resistance. Theoretical and Applied Genetics, 79, 663–672.

    Article  CAS  Google Scholar 

  • Kempton, R.A. (1982) Adjustment for competition between varieties in plant breeding trials. Journal of Agricultural Science, Cambridge, 98, 599–611.

    Article  Google Scholar 

  • Kiesselbach, T.A. (1923) Competition as a source of error in comparative yields. Journal of the American Society of Agronomy, 15, 199–215.

    Article  Google Scholar 

  • Kruglyak, L. and Lander, E.S. (1995) A nonparametric approach for mapping quantitative trait loci. Genetics, 139, 1421–1428.

    PubMed  CAS  Google Scholar 

  • Lande, R. (1981) The minimum number of genes contributing to quantitative variation between and within populations. Genetics, 99, 541–553.

    PubMed  CAS  Google Scholar 

  • Lande, R. and Thompson, R. (1990) Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics, 124, 743–756.

    PubMed  CAS  Google Scholar 

  • Lander, E.S. and Botstein, D. (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 121, 185–199.

    PubMed  CAS  Google Scholar 

  • Lander, E.S., Green, P., Abrahamson, J., Barlow, A., Daly, M.J., Lincoln, S.E. and Newburg, L. (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1, 174–181.

    Article  PubMed  CAS  Google Scholar 

  • Léon, J. and Becker, H.C. (1995) Rapeseed (Brassica napus L.), Genetics, in Physiological Potentials for Yield Improvement of Annual Oil and Protein Crops (eds W. Diepenbrock and H.C. Becker), Advances in Plant Breeding, 17, Blackwell Wissenschafts-Verlag, Berlin, pp. 53–90.

    Google Scholar 

  • Lincoln, S.E. and Lander, E.S. (1990) Mapping Genes Controlling Quantitative Traits using MAPMAKER/QTL, Whitehead Institute for Biomedical Research, Cambridge, Massachusetts.

    Google Scholar 

  • Mather, K. (1951) The Measurement of Linkage in Heredity, Wiley, New York.

    Google Scholar 

  • Mather, K. (1961) Competition and co-operation. Symposium of the Society for Experimental Biology, 15, 264–281.

    Google Scholar 

  • Mather, K. and Caligari, RD.S. (1981) Competitive interactions in Drosophila melanogaster. II. Measurement of competition. Heredity, 46, 239–254.

    Article  Google Scholar 

  • Mather, K. and Jinks, J.L. (1982) Biometrical Genetics, 3rd edn. Springer Science+Business Media Dordrecht, London.

    Google Scholar 

  • Mayo, O. (1987) The Theory of Plant Breeding, 2nd edn. Clarendon Press, Oxford.

    Google Scholar 

  • Melchinger, A.E. (1988) Locating quantitative trait loci by means of molecular markers, in Biometrics in Plant Breeding (ed. B.I. Honne), Proceedings of the seventh meeting of the Eucarpia Section Biometrics in Plant Breeding, Ås, Norway, pp. 92–111.

    Google Scholar 

  • Melchinger, A.E. (1993) Use of RFLP markers for analysis of genetic relationships among breeding materials and prediction of hybrid performance, in International Crop Science I, Crop Science Society of America, Madison, Wisconsin, pp. 621–628.

    Google Scholar 

  • Michelmore, R.W., Paran, I. and Kesseli, R.V. (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proceedings of the National Academy of Sciences, 88, 9828–9832.

    Article  CAS  Google Scholar 

  • Miflin, B.J. (1985) The potential use of novel techniques in plant breeding, in The Proceedings of the 1st Nordic Cell and Tissue Culture Symposium on Research, Breeding and Production of Crop Plants (eds C.H. Bornman, W.K. Heneen, C.J. Jensen and A. Lundqvist), Hereditas Supplementary Volume, 3, 97–107.

    Google Scholar 

  • Moffat, A.S. (1996) Moving forest trees into the modern genetics era. Science, 271, 760–761.

    Article  CAS  Google Scholar 

  • Nyquist, W.W. (1991) Estimation of heritability and prediction of selection response in plant populations. Critical Reviews in Plant Sciences, 10, 235–322.

    Article  Google Scholar 

  • Paran, I. and Michelmore, R.W. (1993) Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theoretical and Applied Genetics, 85, 985–993.

    Article  CAS  Google Scholar 

  • Paterson, A.H., Damon, S., Hewitt, J.D., Zamir, D., Rabinowitch, H.D., Lincoln, S.E., Lander, E.S. and Tanksley, S.D. (1991) Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments. Genetics, 127, 181–197.

    PubMed  CAS  Google Scholar 

  • Pérez de la Vega, M. (1993) Biochemical characterization of populations, in Plant Breeding: Principles and Prospects (eds M.D. Hayward, N.O. Bosemark and I. Romagosa), Springer Science+Business Media Dordrecht, London, pp. 184–200.

    Google Scholar 

  • Phillips, R.L. and Vasil, I.K. (1994) DNA-Based Markers in Plants, Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Book  Google Scholar 

  • Rasmusson, D.C. and Glass, R.L. (1967) Estimates of genetic and environmental variability in barley. Crop Science, 7, 185–188.

    Article  Google Scholar 

  • Roll-Hansen, N. (1986) Svalöf and the origins of classical genetics, in Svalöf 1886–1986: Research and Results in Plant Breeding (ed. G. Olsson), LTs Förlag, Stockholm, pp. 35–43.

    Google Scholar 

  • Salazar, A.M. and Hallauer, A.R. (1986) Divergent mass selection for ear length in maize. Revista Brasileira de Genetica, 9, 281–294.

    Google Scholar 

  • Sax, K. (1923) The association of size difference with seed-coat pattern and pigmentati on in Phaseolus vulgaris. Genetics, 8, 552–560.

    CAS  Google Scholar 

  • Schön, C.C., Lee, M., Melchinger, A.E., Guthrie, W.D. and Woodman, W.L. (1993) Mapping and characterization of quantitative trait loci affecting resistance against second-generation European corn borer in maize with the aid of RFLPs. Heredity, 70, 648–659.

    Article  Google Scholar 

  • Schön, C.C., Melchinger, A.E., Boppenmaier, J., Brunklaus-Jung, E., Herrmann, R.G. and Seitzer, J.F. (1994) RFLP mapping in maize: Quantitative trait loci affecting testcross performance of elite European flint lines. Crop Science, 34, 378–389.

    Article  Google Scholar 

  • Smith, H.F. (1936) A discriminant function for plant selection. Annals of Eugenics, 7, 240–250.

    Google Scholar 

  • Souza, E., Myers, J.R. and Scully, B.T. (1993) Genotype by environment interaction in crop improvement, in Crop Improvement for Sustainable Agriculture (eds M.B. Callaway and C.A. Francis), University of Nebraska Press, Lincoln, pp. 192–233.

    Google Scholar 

  • Spitters, C.J.T. (1979) Competition and its consequences for selection in barley breeding. Agricultural Research Report 893, Centre for Agricultural Publishing and Documentation, Wageningen, The Netherlands.

    Google Scholar 

  • Stam, P. (1993) Construction of integrated genetic linkage maps by means of a new computer package: Join Map. Plant Journal, 3, 739–944.

    Article  CAS  Google Scholar 

  • Stuber, C.W. (1992) Biochemical and molecular markers in plant breeding, in Plant Breeding Reviews (ed. J. Janick), Wiley, New York, 9, 37–61.

    Google Scholar 

  • Stuber, C.W., Lincoln, S.E., Wolff, D.W., Helentjaris, T. and Lander, E.S. (1992) Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics, 132, 823–839.

    PubMed  CAS  Google Scholar 

  • Talbot, M. (1984) Yield variability of crop varieties in the U.K. Journal of Agricultural Science, Cambridge, 102, 315–321.

    Article  Google Scholar 

  • Tanksley, S.D., Ganal, M.W., Prince, J.M. et al. (1992) High density molecular linkage map of the tomato and potato genomes. Genetics, 132, 1141–1160.

    PubMed  CAS  Google Scholar 

  • Thoday, J.M. (1961) Location of polygenes. Nature, 191, 368–370.

    Article  Google Scholar 

  • Utz, H.F. (1990) Optimale Versuchsanlagen für Sortenprüfungen bei Mais. Mais Kolloquium, KWS, Einbeck, Germany, pp. 39–54.

    Google Scholar 

  • Utz, H.F. and Laidig, F. (1989) Genetic and environmental variability of yields in the official FRG variety performance tests. Biuletyn Oceny Odmian, 21/22, 75–85.

    Google Scholar 

  • Utz, H.F. and Melchinger, A.E. (1994) Comparison of different approaches to interval mapping of quantitative trait loci, in Biometrics in Plant Breeding (eds J.W. van Oijen and J. Jansen), Proceedings of the Ninth Meeting of the Eucarpia Section Biometrics in Plant Breeding, Wageningen, The Netherlands, pp. 195–204.

    Google Scholar 

  • Uzunova, M., Ecke, W., Weissleder, K. and Röbbelen, G. (1995) Mapping the genome of rapeseed (Brassica napus L.). I. Construction of an RFLP linkage map and localization of QTLs for seed glucosinolate content. Theoretical and Applied Genetics, 90, 194–204.

    Article  CAS  Google Scholar 

  • Weber, W.E. and Wricke, G. (1994) Genetic markers in plant breeding. Advances in Plant Breeding, 16, Blackwell, Berlin.

    Google Scholar 

  • Williams, J.G.K., Kubelik, A.R., Livak, K.J., Rafalski, J.A. and Tingey, S.V. (1990) DNA Polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research, 18, 6531–6535.

    Article  PubMed  CAS  Google Scholar 

  • Wricke, G. and Weber, W.E. (1986) Quantitative Genetics and Selection in Plant Breeding. W.de Gruyter, Berlin.

    Book  Google Scholar 

  • Wright, S. (1968) Evolution and the Genetics of Populations, Vol. 1. University of Chicago Press, Chicago.

    Google Scholar 

  • Yu, Z.H., Mackill, D.J., Bonman, J.M. and Tanksley, S.D. (1991) Tagging genes for blast resistance in rice via linkage to RFLP markers. Theoretical and Applied Genetics, 81, 471–476.

    Article  Google Scholar 

  • Zeng, Z.B. (1992) Correcting the bias of Wright’s estimates of the number of genes affecting a quantitative character: A further improved method. Genetics, 131, 987–1001.

    PubMed  CAS  Google Scholar 

  • Zeng, Z.B. (1994) Precision mapping of quantitative trait loci. Genetics, 136, 1457–1468.

    PubMed  CAS  Google Scholar 

  • Zeng, Z.B., Houle, D. and Cockerham, C.C. (1990) How informative is Wright’s estimator of the number of genes affecting a quantitative character? Genetics, 126, 235–247.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hill, J., Becker, H.C., Tigerstedt, P.M.A. (1998). Selection with and without competition. In: Quantitative and Ecological Aspects of Plant Breeding. Plant Breeding. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5830-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5830-5_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6463-7

  • Online ISBN: 978-94-011-5830-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics