The Internal Time Formalism in Canonical Gravity

  • C. G. Torre
Conference paper
Part of the Astrophysics and Space Science Library book series (ASSL, volume 211)


The internal time formalism provides a relatively conservative approach to canonical quantum gravity in that one attempts to retain in the Dirac quantization of the theory both general covariance and the conventional apparatus of quantum field theory. The idea is to extract dynamical variables representing many-fingered time from the phase space of general relativity and then use them as one uses such variables in the quantization of parametrized field theories. I give a general, albeit brief, presentation of this strategy and illustrate it with a few examples.


Cauchy Surface Cauchy Data True Degree Closed Universe Inertial Observer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. DeWitt, Phys. Rev. 160, 1113 (1967).ADSzbMATHCrossRefGoogle Scholar
  2. 2.
    K. V. Kuchař, in General Relativity and Relativistic Astrophysics, Proceedings of The Fourth Canadian Conference on General Relativity and Relativistic Astrophysics, Winnipeg, Canada, 1991, edited by G. Kunstatter, D. Vincent, and J. Williams (World Scientific, Singapore, 1992).Google Scholar
  3. 3.
    K. V. Kuchař, in Conceptual Problems of Quantum Gravity, edited by À. Ashtekar and J. Stachel (Birkhauser, Boston, 1991).Google Scholar
  4. 4.
    A. Ashtekar, Lectures on Non-Perturbative Canonical Gravity. (World Scientific, Singapore, 1991).zbMATHGoogle Scholar
  5. 5.
    P. Dirac. Lectures on Quantum Mechanics, (Yeshiva University, New York. 1964).Google Scholar
  6. 6.
    P. Dirac, Proc. R. Soc. London A246, 333 (1958).MathSciNetADSGoogle Scholar
  7. 7.
    R. Arnowitt, S. Deser, and C. Misner in Gravitation: An Introduction to Current Research, edited by L. Witten (Wiley, New York, 1962).Google Scholar
  8. 8.
    K. V. Kuchař, J. Math. Phys. 13, 768 (1972).ADSCrossRefGoogle Scholar
  9. 9.
    K. V. Kuchař in Highlights in Gravitation and Cosmology, eds B. Iyer et al, (Cambridge University Press, Cambridge, 1988).Google Scholar
  10. 10.
    J. Isenberg and J. Marsden, Phys. Rep. 89, 179 (1982).MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    C. G. Torre, Phys. Rev. D 46, R3231 (1992).ADSCrossRefGoogle Scholar
  12. 12.
    A. Fischer, J. Marsden, and V. Moncrief, Ann. Inst. H. Poincaré 33, 147 (1980).MathSciNetzbMATHGoogle Scholar
  13. 13.
    T. Regge and C. Teitelboim, Ann. Phys. 88, 286 (1974).MathSciNetADSzbMATHCrossRefGoogle Scholar
  14. 14.
    K. V. Kuchař, Phys. Rev D 4, 955 (1971).ADSzbMATHCrossRefGoogle Scholar
  15. 15.
    D. Neville, Class. Quantum Grav. 10, 2223 (1993).MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    K. V. Kuchař, Phys. Rev D 50, 3961 (1994).MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    K. V. Kuchař and C. G. Torre, J. Math. Phys 30, 1769 (1989).MathSciNetADSzbMATHCrossRefGoogle Scholar
  18. 18.
    K. V. Kuchař and C. G. Torre, in Conceptual Problems of Quantum Gravity. edited by A. Ashtekar and J. Stachel (Birkhauser, Boston. 1991).Google Scholar
  19. 19.
    C. G. Torre, Phys. Rev. D 40, 2588 (1989).MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    J. D. Romano and C. G. Torre, Phys. Rev. D 53, 5634 (1996).MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    K. V. Kuchař, Phys. Rev. D 39, 2263 (1989).MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    M. Varadarajan and C. G. Torre, in preparation.Google Scholar
  23. 23.
    D. Korotkin and H. Nicolai, preprint hep-th/9605144, (1996).Google Scholar
  24. 24.
    B. Berger, Ann. Phys. 156, 155 (1984).ADSzbMATHCrossRefGoogle Scholar
  25. 25.
    Joseph Romano, private communication.Google Scholar
  26. 26.
    D. Boulware and S. Deser, J. Math. Phys. 8, 1468 (1967).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1997

Authors and Affiliations

  • C. G. Torre
    • 1
  1. 1.Department of PhysicsUtah State UniversityLoganUSA

Personalised recommendations