Advertisement

Shells in Nuclei

  • Alex Sitenko
  • Victor Tartakovskii
Chapter
  • 439 Downloads
Part of the Fundamental Theories of Physics book series (FTPH, volume 84)

Abstract

Independence of the motion of nucleons in the nucleus and the self-consistent potential. Lying at the basis of the shell model of the nucleus is the assumption that the nucleons in the nucleus move almost independently of each other, despite the existence of the strong interaction between free nucleons. The interaction of nucleons with each other reduces in the shell model to the interaction of the individual nucleons with a self-consistent field. Generally speaking, each nucleon moves in the field created by the other nucleons. In the shell model, it is assumed that this field is the same for all the nucleons. The potential of this self-consistent field is assumed to be static and spherically symmetric. Because of the short-range character of the nuclear forces, the potential of the self-consistent field varies in almost the same way as the nuclear density: it is constant inside the nucleus and goes to zero outside the nucleus. As a result, the one-particle wave functions depend on the distance from the centre of the nucleus and go to zero outside the nucleus.

Keywords

Irreducible Representation Orbital Angular Momentum Permutation Group Total Angular Momentum Young Tableau 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bayman, B.F. (1957) Groups and their Applications to Spectroscopy (Lecture notes, Nordita,Copenhagen; reissued 1960).Google Scholar
  2. Bethe, H.A. and Rose, M.E. (1937) Phys.Rev., 51, p. 283.ADSCrossRefGoogle Scholar
  3. Blin-Stoyle, R.J. (1956) Rev.Mod.Phys., 28, p.75.ADSCrossRefGoogle Scholar
  4. Edmonds, A.R. and Flowers, B.H. (1952) Proc.Roy..Soc.. A214, p.515.ADSGoogle Scholar
  5. Elliott, J.P. (1958a) Proc.Roy.Soc, A245, p.128.ADSGoogle Scholar
  6. Elliott, J.P. (1958a) Proc.Roy.Soc, A245, p.562.ADSGoogle Scholar
  7. Elliott, J.P. and Lane, A.M. (1957) ”The nuclear shell model”, Encyclopaedia of Physics (ed.S.Flügge), Vol.39, Springer-Verlag, Berlin.Google Scholar
  8. Elliott, J.P. and Skyrme, T.H.R. (1955) Proc.Roy.Soc, A232, p.561.ADSGoogle Scholar
  9. Elsasser, W.M. (1934) J.de Phys.Radium, 5, p.625.Google Scholar
  10. Flowers, B.H. (1952) Proc.Roy.Soc. A212, p.248.ADSGoogle Scholar
  11. Goeppert-Mayer, M. (1949) Phys.Rev., 75, p.1969.ADSCrossRefGoogle Scholar
  12. Goeppert-Mayer, M. (1950) Phys.Rev., 78, p. 16.ADSzbMATHCrossRefGoogle Scholar
  13. Goeppert-Mayer, M. and Jensen, J.H.D. (1955) Elementary Theory of Nuclear Shell Structure, Wiley, N.Y.zbMATHGoogle Scholar
  14. Haxel, O., Jensen, J.H.D. and Suess, H.E. (1949) Phys.Rev., 75, p.1766.ADSCrossRefGoogle Scholar
  15. Haxel, O., Jensen, J.H.D. and Suess, H.E. (1950) Z.Phys., 128, p.295.ADSzbMATHCrossRefGoogle Scholar
  16. Heisenberg, W. (1949) Theory of the atomic Nucleus, Wieweg, Braunschweig (English translation (Nuclear Physics) published by Methuen, London,1953).Google Scholar
  17. Inglis, D.R. (1953) Rev.Mod.Phys., 25, p.390.ADSCrossRefGoogle Scholar
  18. Jahn, H.A. (1950) Proc.Roy.Soc, A201, p.516.ADSGoogle Scholar
  19. Jahn, H. and van Wieringen, H. (1951) Proc.Roy.Soc,A209, p.502.ADSGoogle Scholar
  20. Klinkenberg, P.F.A. (1952) Rev.Mod.Phys., 24, p.63.ADSzbMATHCrossRefGoogle Scholar
  21. Kurath, D. (1956) Phys.Rev., 101, p.216.ADSCrossRefGoogle Scholar
  22. Neudachin, V.G. and Smirnov, Yu.F. (1969) Nucleon Clusters in Light Nuclei ”Nauka”, Moscow.Google Scholar
  23. Rosenfeld, L. (1948) Nuclear Forces, North-Holland, Amsterdam.Google Scholar
  24. Schwartz, C. (1955) Phys.Rev., 97, p.380.ADSzbMATHCrossRefGoogle Scholar
  25. de-Schalit, A. and Talmi, I. (1963) Nuclear Shell Theory, Academic Press,N.Y.Google Scholar
  26. Weyl, H. (1946) The Classical Groups. Princeton University Press.zbMATHGoogle Scholar
  27. Wigner, E.P. (1959) Group Theory and its Applications to the Quantum Mechanics of Atomic Spectra, Academic Press, N.Y.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1997

Authors and Affiliations

  • Alex Sitenko
    • 1
  • Victor Tartakovskii
    • 2
  1. 1.Bogolyubov Institute for Theoretical PhysicsUkrainian Academy of SciencesKievUkraine
  2. 2.Department of PhysicsTaras Shevchenko UniversityKievUkraine

Personalised recommendations