Advertisement

Nucleons and Nuclear Forces

  • Alex Sitenko
  • Victor Tartakovskii
Chapter
  • 536 Downloads
Part of the Fundamental Theories of Physics book series (FTPH, volume 84)

Abstract

Main characteristics of nuclei. Atomic nuclei are characterized by definite masses and electric charges. The charge of an atomic nucleus q is equal to minus the multiple of the absolute value of the electron charge -e, i.e.,
$$q = Ze.$$
The integer Z determines the position of the atom in the periodic table, it is called the atomic number. Nuclei with the same charge but different masses are called isotopes. Taking 12 to be the mass of the most abundant carbon isotope, one finds all the nuclear masses to be nearly integers. The integer A that is the closest to the mass value is referred to as the mass number of the nucleus.

Keywords

Elastic Scattering Singlet State Total Angular Momentum Nuclear Interaction Nuclear Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartlett, J.H. (1936) Phys. Rev., 49, p. 102.ADSCrossRefGoogle Scholar
  2. Bethe, H.A. (1947) Elementary Nuclear Theory (Chap.2), Wiley, N.Y.Google Scholar
  3. Bethe, H.A. (1949) Phys. Rev., 76, p. 38.ADSzbMATHCrossRefGoogle Scholar
  4. Bethe, H. and Peierls, R. (1935) Proc. Roy. Soc, A148, p. 146.ADSGoogle Scholar
  5. Blatt, J.M. and Biedenharn, L.C. (1952) Phys. Rev., 86, p. 399.ADSzbMATHCrossRefGoogle Scholar
  6. Breit, G. (1947) Phys. Rev., 71, p. 215.ADSzbMATHCrossRefGoogle Scholar
  7. Breit, G., Condon, E.U. and Present, R.D. (1936) Phys. Rev., 50, p. 825.ADSzbMATHCrossRefGoogle Scholar
  8. Cassen, B. and Condon, E.U. (1936) Phys. Rev., 50, p. 846.ADSCrossRefGoogle Scholar
  9. Eisenbud, L. and Wigner, E.P. (1941) Proc. Nat. Acad. Sci. (USA), 27, p. 281.ADSCrossRefGoogle Scholar
  10. Fermi, E. (1936) Ricerca Sei., 7, p. 13 (in Collected Papers of Enrico Fermi, Chicago University Press, 1962).Google Scholar
  11. Fermi, E. (1950) Nuclear Physics, Chicago University Press.zbMATHGoogle Scholar
  12. Gammel, J.L. and Thaler, R.M. (1957) Phys. Rev., 107, p. 291.MathSciNetADSCrossRefGoogle Scholar
  13. Gammel, J.L. and Thaler, R.M. (1959) Phys. Rev., 107, p. 1337.MathSciNetADSCrossRefGoogle Scholar
  14. Gartenhaus, S. (1955) Phys. Rev., 100, p. 900.ADSzbMATHCrossRefGoogle Scholar
  15. Hamada, T. and Johnston, I.D. (1962) Nucl. Phys., 34, p. 382.CrossRefGoogle Scholar
  16. Heisenberg, W. (1932) Z. Phys., 77, p. 1.MathSciNetADSCrossRefGoogle Scholar
  17. Hulthén, L. and Sugawara, M. (1957) “The two-nucleon problem”, Encyclopaedia of Physics (ed. S. Flügge), Vol.39, Springer-Verlag, Berlin.Google Scholar
  18. Jackson, J.D. and Blatt, J.M. (1950) Rev. Mod. Phys., 22, p. 77.ADSCrossRefGoogle Scholar
  19. Jastrow, R. (1951) Phys.Rev., 81, p. 165.ADSzbMATHCrossRefGoogle Scholar
  20. Lacombe, M. e.a. (1980) Phys.Rev., C21, p. 861.ADSGoogle Scholar
  21. Landau, L.D. and Smorodinskii, Ya.A. (1944) Zh. Eksp. Teor. Fiz., 14,p. 269, (translation in the Collected Papers of L.D.Landau,Pergamon Press, Oxford, 1965).Google Scholar
  22. Landau, L.D. and Smorodinskii, Ya.A. (1955) Lectures on Nuclear Theory, Gostekhteorizdat, Moscow (translation published by Plenum Press, N.Y., 1959).Google Scholar
  23. Lassila, K.E. e.a. (1962) Phys. Rev., 126, p. 881.ADSCrossRefGoogle Scholar
  24. MacGregor, M.H., Arndt, R.A. and Wright, R.M. (1968a) Phys. Rev.,169, p. 1128.ADSCrossRefGoogle Scholar
  25. MacGregor, M.H., Arndt, R.A. and Wright, R.M. (1968b) Phys. Rev.,173, p. 1272.ADSCrossRefGoogle Scholar
  26. Macleidt, R. e.a. (1987) Physics Reports, 149, p. 1CrossRefGoogle Scholar
  27. Macleidt, R. e.a. (1989) Nucl. Phys., 19, p. 189.Google Scholar
  28. Majorana, E. (1933) Z. Phys., 82, p. 137.ADSCrossRefGoogle Scholar
  29. Puzikov, L., Ryndin, R. and Smorodinskii, Ya. (1957) Zh. Eksp. Teor. Fiz., 32, p. 592, [(1957) Sov. Phys. - JETP, 5, p. 489].Google Scholar
  30. Rarita, W. and Schwinger, J. (1941) Phys. Rev., 59, p. 436.ADSCrossRefGoogle Scholar
  31. Reid, R.V.Jr. (1968) Ann. Phys., (NY.), 50, p. 411.ADSCrossRefGoogle Scholar
  32. Schwinger, J. (1947) Phys. Rev., 72, p. 742.Google Scholar
  33. Schwinger, J. and Teller, E. (1937) Phys. Rev., 52, p. 286.ADSzbMATHCrossRefGoogle Scholar
  34. Signell, P.S. and Marshak, R.E. (1957) Phys. Rev., 106, p. 832ADSCrossRefGoogle Scholar
  35. Signell, P.S. and Marshak, R.E. (1958) Phys. Rev., 109, p. 1229ADSCrossRefGoogle Scholar
  36. Signell, P.S. and Marshak, R.E.(1957) Phys. Rev. Lett., 1, p. 416.ADSCrossRefGoogle Scholar
  37. Smorodinskii, Ya.A. (1952) Lectures at the Conference of Yugoslav Physicists, Lošinj Island.Google Scholar
  38. Stapp, H., Ypsilantis, T.J. and Metropolis, N. (1957) Phys. Rev., 105, p. 302.ADSCrossRefGoogle Scholar
  39. Stoks, V.G., van Campen, P.C., Spit, W. and de Swart, J.J. (1988) Phys. Rev. Lett.,60, p. 1932.ADSCrossRefGoogle Scholar
  40. Wilson, R. (1963) The Nucleon-nucleon Interaction, Wiley, N.Y.Google Scholar
  41. Wiringa, R.W., Stoks, V.G. and Schiavilla, R. (1955) Phys. Rev., C51, p. 38.ADSGoogle Scholar
  42. Wolfenstein, L. (1956) Ann. Rev. Nuci Sci., 6, p. 43.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1997

Authors and Affiliations

  • Alex Sitenko
    • 1
  • Victor Tartakovskii
    • 2
  1. 1.Bogolyubov Institute for Theoretical PhysicsUkrainian Academy of SciencesKievUkraine
  2. 2.Department of PhysicsTaras Shevchenko UniversityKievUkraine

Personalised recommendations