Skip to main content

Diazotrophic endophytes: progress and prospects for nitrogen fixation in monocots

  • Chapter
Current Issues in Symbiotic Nitrogen Fixation

Part of the book series: Developments in Plant and Soil Sciences ((DPSS,volume 72))

Abstract

The development of nitrogen fixation in maize can be considered the “holy grail” of nitrogen fixation research. As nitrogen fertilization is one of the highest costs of corn production, the development of a symbiosis between diazotrophic bacteria and corn would be of enormous economic value. Such a discovery would also improve human health as it would decrease the amount of nitrate in ground water as well as in corn cultured for human consumption. Several proposals have been made toward this end. These include: a) the transfer of root nodulation genes from a legume to maize; b) the expression of the bacterial nif regulon in maize organelles; and c) the development of corn lines with the ability to accept fixed nitrogen from diazotrophs in the rhizosphere. All of these proposals have enormous technical problems to overcome such that the development of nitrogen-fixing corn in the near term has been considered unlikely. An alternative and less-technically challenging approach may be a thorough study of non-pathogenic bacterial endophytes that already inhabit the corn plant.

The discovery of a nitrogen-fixing bacterial-sugar cane association by Döbereiner and coworkers in Brazil illustrates the enormous potential of endophytic bacteria to enhance grass biomass in the absence of nitrogen fertilizer. Döbereiner and coworkers have discovered diazotrophic strains of Acetobacter diazotrophic us and Herbaspirillum seropedicae in lines of sugar cane that were bred in the absence of nitrogen fertilizer. The Brazilian group has also demonstrated that sugar cane plants infected with these diazotrophs are capable of deriving all of their nitrogen needs from N2.

Recently, the presence of non-pathogenic endophytic bacteria in corn has been shown. Based on this evidence and using the sugar cane paradigm as an example, investigators are working toward the discovery and analysis of diazotrophic endophytes in corn which includes the search for corn germplasm that would readily benefit from an association with these bacteria. Several diazotrophic endophytes have been identified in grass species that are members of the a-, ß-, and γ-subclasses of the proteobacteria. Our understanding of the ability of these bacteria to enhance the growth of grasses through nitrogen fixation is only beginning to be explored but this approach is thought to be far less technically challenging than are other proposals to develop ‘nitrogen fixation in maize.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen R M, Chatterjee R, Madden M S, Ludden P W and Shah V K 1994 Biosynhesis of the iron-molybdenum cofactor of nitrogenase. Crit. Rev. Biotechnol. 14, 225–249.

    Article  PubMed  CAS  Google Scholar 

  • Al-Mallah M K, Davey M R and Cocking E C 1990 Nodulation of oilseed rape (Brassica napus) by rhizobia. J. Exp. Bot. 41, 1567–1572.

    Article  Google Scholar 

  • Angert E R, Clements K D and Pace N R 1993 The largest bacterium. Nature 362, 239–241.

    Article  PubMed  CAS  Google Scholar 

  • Ashbolt N J and Inkerman P A 1990 Acetic acid bacterial biota of the pink sugar cane mealybug, Saccharococcus sacchari, and its environs. Appl. Environ. Microbiol. 56, 707–712.

    PubMed  CAS  Google Scholar 

  • Baldani J I, Baldani V L D, Seidin L and DöberEiner J 1986 Characterization of Herbaspirillum seropedicae gen. nov., sp. nov., a root-associated nitrogen-fixing bacterium. Int. J. Syst. Bacteriol. 36, 86–93.

    CAS  Google Scholar 

  • Baldani V L D, Baldani J I, Olivares F and Döbereiner J 1992 Identification and ecology of Herbaspirillum sewpedicae and the closely related Pseudomonas rubrisubalbicans. Symbiosis 13, 65–73.

    Google Scholar 

  • Bertolini M, Lorenzoni C, Marocco A and Maggiore T 1993 Soluble solids content in the stalk of maize (Zea mays L.) lines and hybrids. Maydica 38, 321–324.

    Google Scholar 

  • Boddey R M 1995 Biological nitrogen fixation in sugar cane: a key to energetically viable biofuel production. Crit. Rev. Plant Sci. 14, 263–279.

    Google Scholar 

  • Boddey R M, Urquiaga S, Reis V and Döbereiner J 1991 Biological nitrogen fixation associated with sugar cane. Plant and Soil 137, 111–117.

    Article  Google Scholar 

  • Burris R H 1994 Comparitive study of the response of Azotobacter vinelandii and Acetobacter diazotrophicus to changes in pH. Protoplasma 183, 62–66.

    Article  Google Scholar 

  • Caballero-Mellado J and Martinez-Romero E 1994 Limited genetic diversity in the endophytic sugarcane bacterium Acetobacter diazotrophicus. Appl. Environ. Microbiol. 60, 1532–1537.

    PubMed  CAS  Google Scholar 

  • Carlson R W, Price N P J and Stacey G 1994 The biosynthesis of rhizobial lipo-oligosaccharide nodulation signal molecules. Molec. Plant-Microbe Interact. 7, 684–695.

    Article  CAS  Google Scholar 

  • Cavalcante V A and Döbereiner J 1988 A new acid-tolerant nitrogen-fixing bacterium associated with sugarcane. Plant and Soil 108, 23–31.

    Article  Google Scholar 

  • Cocking E C, Al-Mallah M K, Benson E and Davey M R 1990 Nodulation of non-legumes by rhizobia. In Nitrogen Fixation: Achievements and Objectives. Eds. P M Gresshoff, L E Roth, G Stacey and W E Newton, pp 813–823. Chapman and Hall, New York, USA.

    Google Scholar 

  • Cocking E C, Davey M R, Kothari S L, Srivastava J S, Jing Y X, Ridge R W and Rolfe B G 1993 Altering the specificity control of the interaction between rhizobia and plants. Symbiosis 14, 123–130.

    Google Scholar 

  • De Bruijn F J, Ying Y and Dazzo F B 1995 Potential and pitfalls of trying to extend symbiotic interactions of nitrogen-fixing organisms to presently non-nodulated plants, such as rice. Plant and Soil 174, 225–240.

    Article  Google Scholar 

  • Dénarié J, Debellé F and Rosenberg C 1992 Signalling and host range variation in nodulation. Annu. Rev. Microbiol. 46, 497–531.

    Article  PubMed  Google Scholar 

  • Dixon R, Vanderleyden J and Romero D 1993 Extension of nitrogen fixation to other crops. In New Horizons in Nitrogen Fixation. Eds. R Palacios, J Mora and W E Newton, pp 765–768. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Döbereiner J 1992 History and new perspectives of diazotrophs in association with non-leguminous plants. Symbiosis 13, 1–13.

    Google Scholar 

  • Döbereiner J, Pimentel J P, Olivares F and Urquiaga S 1990 Bactérias diazotróficas podem ser endófitas e/ou fitopathogěnicas? An. Acad. Bras. Ci. 62, 319.

    Google Scholar 

  • Döbereiner J, Reis V and Lararini A C 1988 New N2 fixing bacteria in association with cereals and sugarcane. In Nitrogen Fixation: Hundred Years After. Eds. H Bothe, F J de Bruijn and W E Newton. pp 717–722. Gustav Fischer, Stuttgart, Germany.

    Google Scholar 

  • Döbereiner J, Reis V M, Paula M A and Olivares F 1993 Endophytic diazotrophs in sugar cane, cereals and tuber plants. In New Horizons in Nitrogen Fixation. Eds. R Palacios, J Mora and W E Newton. pp 671–676. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Dong Z, Canny M J, McCully M E, Roboredo M R, Cabadilla C F, Ortega E and Rodés R 1994 A nitrogen-fixing edophyte of sugarcane stems. A new role for the apoplast. Plant Physiol. 105, 1139–1147.

    CAS  Google Scholar 

  • Dong Z, Heydrich M, Bernard K and McCully M E 1995 Further evidence that the N2-fixing endophytic bacterium from the intercellular spaces of sugarcane stems is Acetobacter diazotrophicus. Appl. Environ. Microbiol. 61, 1843–1846.

    PubMed  CAS  Google Scholar 

  • Ela S W, Anderson M A and Brill W J 1982 Screening and selection of maize to enhance associative bacterial nitrogen fixation. Plant Physiol. 70, 1564–1567.

    Article  PubMed  CAS  Google Scholar 

  • Elmerich C, Zimmer W and Vieille C 1992 Associative nitrogen-fixing bacteria. In Biological Nitrogen Fixation. Eds. G Stacey, R H Burris and H J Evans. pp 212–258. Chapman and Hall, New York, USA.

    Google Scholar 

  • Fisher P J, Broad S A, Clegg C D and Scott H M L 1993 Retention and spread of a genetically-engineered pseudomonad in seeds and plants of Zea mays L.-a preliminary study. New Phytol. 124, 101–106.

    Article  Google Scholar 

  • Fisher P J, Petrini O and Scott H M L 1992 The distribution of some fungal and bacterial endophytes in maize (Zea mays L.). New Phytol. 122, 299–305.

    Article  Google Scholar 

  • Franssen H J, Vijn I, Yang W C and Bisseling T 1992 Developmental aspects of the Rhizobium- legume symbiosis. Plant Molec. Biol. Internat. J. Molec. Biol. Biochem. Genet. Eng. 19, 89–107.

    CAS  Google Scholar 

  • Fuentes-Ramirez L E, Jimenez-Salgado T, Abarca-Ocampo I R and Caballero-Mellado J 1993 Acetobacter diazotrophicus, an indoleacetic acid producing bacterium isolated from sugarcane cultivars of México. Plant and Soil 154, 145–150.

    Article  CAS  Google Scholar 

  • Garvin D F and Weeden N F 1994 Genetic linkage between isozyme, morphological, and DNA markers in tepary bean. J. Hered. 85, 273–278.

    CAS  Google Scholar 

  • Gillis M, Kersters K, Hoste B, Janssens D, Kroppenstedt R M, Stephan M P, Teixeira K R S, Döbereiner J and de Ley J 1989 Acetobacter diazotrophicus sp. nov., a nitrogen-fixing acetic acid bacteria associated with sugarcane. Int. J. Syst. Bacteriol. 39, 361–364.

    Article  Google Scholar 

  • Glick B R 1995 The enhancement of plant growth by free-living bacteria. Can. J. Microbiol. 41, 109–117.

    Article  CAS  Google Scholar 

  • Hallberg T B 1995 Nitrogen-fixing bacteria associated with maizes native of Oaxaca. In Abstracts for the 10th International Congress on Nitrogen Fixation, St. Petersburg, Russia, no 638.

    Google Scholar 

  • Hetrick B A D, Wilson G W T and Cox T S 1992 Mycorrhizal dependence of modern wheat varieties, landraces, and ancestors. Can. J. Bot. 70, 2032–2040.

    Article  Google Scholar 

  • Hetrick B A D, Wilson G W T and Cox T S 1993 Mycorrhizal dependence of modern wheat cultivars and ancestors: a synthesis. Can. J. Bot. 71, 512–518.

    Article  Google Scholar 

  • Hoflich G, Wiehe W and Kuhn G 1994 Plant growth stimulation by inoculation with symbiotic and associative rhizosphere microorganisms. Experientia 50, 897–905.

    Article  Google Scholar 

  • Hurek T, Burggraf S, Woese C R and Reinhold-Hurek B 1993 16S rRNA-targeted polymerase chain reaction and oligonucleotide hybridization to screen for Azoarcus spp., grass-associated dia-zotrophs. Appl. Environ. Microbiol. 59, 3816–3824.

    PubMed  CAS  Google Scholar 

  • Hurek T, Reinhold-Hurek B, Turner G L and Bergersen F J 1994a Augmented rates of respiration and efficient nitrogen fixation an nanomolar concentrations of dissolved O2 in hyperinduced Azoarcus sp. strain BH72. J. Bacteriol. 176, 4726–4733.

    PubMed  CAS  Google Scholar 

  • Hurek T, Reinhold-Hurek B, van Montagu M and Kellenberger E 1994b Root colonization of Azoarcus sp. strain BH72 in grasses. J. Bacteriol. 176, 1913-1923.

    Google Scholar 

  • Isopi R, Fabbri P, Delgallo M and Puppi G 1995 Dual inoculation of Sorghum bicolor (L.) Moench ssp bicolor with vesicular-arbuscular mycorrhizas and Acetobacter diazotrophicus. Symbiosis 18, 43–55.

    Google Scholar 

  • James E K, Reis V M, Olivares F L, Baldani J I and Döbereiner J 1994 Infection of sugar cane by the nitrogen fixing bacterium Acetobacter diazotrophicus. J. Exp. Bot. 45, 757–766.

    Article  CAS  Google Scholar 

  • Kiss G B, Csanadi G, Kaiman K, Kalo P and Okresz L 1993 Construction of a basic genetic map of alfalfa using RFLP, RAPD, isozyme and morphological markers. Molec. Gen. Genet. 238, 129–137.

    PubMed  CAS  Google Scholar 

  • Klingler J M, Stowe R P, Obenhuber D C, Groves T O, Mishra S K and Pierson D L 1992 Evaluation of the Biolog automated microbial identification system. Appl. Environ. Microbiol. 58, 2089–2092.

    PubMed  CAS  Google Scholar 

  • Li F, Liu R, Wang W and Yan Z 1995 Research on distribution of 32P labelled nitrogen fixing bacteria in plant. In Abstracts for the 10th International Congress on Nitrogen Fixation, St. Petersburg, Russia, no 623.

    Google Scholar 

  • Li R P and MacRae I C 1991 Specfic association of diazotrophic acetobacters with sugarcane. Soil Biol. Biochem. 23, 999–1002.

    Article  CAS  Google Scholar 

  • Li R and MacRae I 1992 Specific identification and enumeration of Acetobacter diazotrophicus in sugarcane. Soil Biol. Biochem. 24, 413–419.

    Article  Google Scholar 

  • Lima E, Boddey R M and Döbereiner J 1987 Quantification of biological nitrogen fixation associated with sugar cane using a 15N aided nitrogen balance. Soil Biol. Biochem. 19, 165–170.

    Article  CAS  Google Scholar 

  • Mc Inroy J A and Kloepper J W 1991 Analysis of population densities and identification of endophytic bacteria of maize and cotton in the field. In Plant Growth-Promoting Rhizobacteria-Progress and Prospects. Eds. C Keel, B Koller and G Défago. pp 328–331. IOBC/WPRS Bull. XIV/8.

    Google Scholar 

  • McInroy J A and Kloepper J W 1995 Survey of indigenous bacterial endophytes from cotton and sweet corn. Plant and Soil 173, 337–342.

    Article  CAS  Google Scholar 

  • Meletzus D, Pero R, Kennedy C, Teixeira K and Baldani I 1995 Identification of nifA and ntrBC genes in Acetobacter diazotrophicus. In Abstracts for the 10th International Congress on Nitrogen Fixation, St. Petersburg, Russia, no 125.

    Google Scholar 

  • Mosse B 1962 The establishment of vesicular-arbuscular mycor-rhizae under aseptic conditions. J. Gen. Microbiol. 27, 509–520.

    Article  PubMed  CAS  Google Scholar 

  • Nodari R O, Tsai S M, Guzman P, Gilbertson R L and Gepts P 1993 Toward an integrated linkage map of common bean. III. Mapping genetic factors controlling host-bacteria interactions. Genetics 134, 341–350.

    CAS  Google Scholar 

  • Okon Y and Labandera-Gonzalez C A 1994 Agronomic applications of Azospirillum-an evaluation of 20 years worldwide field inoculation. Soil Biol. Biochem. 26, 1591–1601.

    Article  CAS  Google Scholar 

  • Palus J A, Borneman J, Ludden P W and Triplett E W 1996A diazotrophic bacterial endophytes isolated from stems of Zea mays L. and Zea luxurians Iltis and Doebley. Plant and Soil. 186.

    Google Scholar 

  • Paula M A, Reis V M and Döbereiner J 1991 Interactions of Glomus darum with Acetobacter diazotrophicus in infection of sweet potato (Ipomoea batatas), sugarcane (Saccharum), sweet sorghum (Sorghum vulgare) Biol. Fertil. Soils 11, 111–115.

    Article  Google Scholar 

  • Paula M A, Reis V M, Urquiaga S and Döbereiner J 1990 Esporos de fungo MNA Glomus clarum como veiculo de infeeçao de Acetobacter diazotrophicus. Anais Acad. Bras. Ciěnc 62, 318.

    Google Scholar 

  • Pimentel J P, Olivares F, Pitard R M, Urquiaga S, Akiba F and Döbereiner J 1991 Dinitrogen fixation and infection of grass leaves by Pseudomonas rubrsubalbicans and Herbaspirillum seropedicae. Plant and Soil 137, 61–65.

    Article  Google Scholar 

  • Raicevic V, Saric M, Saric Z and Bogdanovic V 1995a Azotobacter movement in maize root. In Abstracts for the 1 Oth International Congress on Nitrogen Fixation, St. Petersburg, Russia, no 607.

    Google Scholar 

  • Raicevic V, Saric M, Saric Z and Bogdanovic V 1995b Colonization and adsorption of some Azotobacter strains in maize root. In Abstracts for the 10th International Congress on Nitrogen Fixation, St. Petersburg, Russia, no 608.

    Google Scholar 

  • Reinhold B, Hurek T, Niemann E-G and Fendrik I 1986 Close association of Azospirillum and diazotrophic rods with different root zones of Kallar grass. Appl. Environ. Microbiol. 52, 520–526.

    PubMed  CAS  Google Scholar 

  • Reinhold-Hurek B and Hurek T 1993 Capacities of Azoarcus sp., a new genus of grass-associated diazotrophs. In New Horizons in Nitrogen Fixation. Eds. R Palacios, J Mora and W E Newton, pp 691–694. Kluwer Acad. Publ., Dordrecht, The Netherlands.

    Google Scholar 

  • Reinhold-Hurek B, Hurek T, Claeyssens M and van Montagu M 1993a Cloning, expression in Escherichia coli, and characterization of cellulolytic enzymes of Azoarcus sp., a root-invading diazotroph. J. Bacteriol. 175, 7056–7065.

    PubMed  CAS  Google Scholar 

  • Reinhold-Hurek B, Hurek T, Gillis M, Hoste B, Vancanneyt M, Ker-sters K and de Ley J 1993b Azoarcus gen. nov., Nitrogen-fixing proteobacteria associated with roots of kallar grass (Leptochloa fusca (L.) Kunth), and description of two species, Azoarcus indignes sp. nov. and Azoarcus communis sp. nov. Int. J. Syst. Bacteriol. 43, 574–584.

    Article  Google Scholar 

  • Reinhold-Hurek B, Hurek T, Maes T and van Montagu M 1993c Analysis of the role of endoglucanse in spreading of Azoarcus in grass seedlings. In New Horizons in Nitrogen Fixation. Eds. R Palacios, J Mora and W E Newton. p 256. Kluwer Academic Publ., Dordrecht, The Netherlands.

    Google Scholar 

  • Ridge R W, Bender G L and Rolfe B G 1992 Nodule-like structures induced on the roots of wheat seedlings by the addition of the synthetic auxin 2, 4-dichlorophenoxyacetic acid and the effects of microorganisms. Aust. J. Plant Physiol. 19, 481–492.

    Article  CAS  Google Scholar 

  • Ridge R W, Ride K M and Rolfe B G 1993a Nodule-like structures induced on the roots of rice seedlings by addition of the synthetic auxin 2,4-dichlorophenoxyacetic acid. Aust. J. Plant Physiol. 20, 705–717.

    Article  CAS  Google Scholar 

  • Ridge R W, Rolfe B G, Jing Y and Cocking E C 1993b Rhizobium nodulation of non-legumes. Symbiosis 14, 345–357.

    Google Scholar 

  • Sevilla M and Kennedy C 1995 Characterization of nifHDK in Acetobacter diazotrophicus. In Abstracts for the 10th International Congress on Nitrogen Fixation, St. Petersburg, Russia, no 124.

    Google Scholar 

  • Stacey G, Sanjuan J, Luka S, Dockendorff T and Carlson R W 1995 Signal exchange in the Bradyrhizobium-soybean symbiosis. Soil Biol. Biochem. 27, 473–83.

    Article  CAS  Google Scholar 

  • Stephan M P, Oliveira M, Teixeira K R S, Martinez-Drets G and Döbereiner J 1991 Physiology and dinitrogen fixation of Acetobacter diazotrophicus. FEMS Microbiol. Lett. 77, 67–72.

    Article  CAS  Google Scholar 

  • Torres A M, Weeden N F and Martin A 1993 Linkage among isozyme, RFLP and RAPD markers in Vicia faba. Theor. Appl. Genet. 85, 937–945.

    Article  CAS  Google Scholar 

  • Ueda T, Suga Y, Yahiro N and Matsuguchi T 1995 Remarkable N2-fixing bacterial diversity detected in rice roots by molecular evolutionary analysis of nifH gene sequences. J. Bacteriol. 177, 1414–1417.

    PubMed  CAS  Google Scholar 

  • Urquiaga S, Cruz K H S and Boddey R M 1992 Contribution of nitrogen fixation to sugar cane: Nitrogen-15 and nitrogen-balance estimates. Soil Sci. Soc. Am. J. 56, 105–114.

    Article  Google Scholar 

  • Varma A K, Singh K and Lall V K 1981 Lumen bacteria from endomycorrhizal spores. Curr. Microbiol. 6, 207–211.

    Article  Google Scholar 

  • Verma D P S and Miao G H 1992 Induction of nodulin genes and root nodule symbiosis. Semin. Ser. Soc. Exp. Biol. 49, 175–204.

    CAS  Google Scholar 

  • Weerakoon L K, Weber D F and Schneerman M C 1993 Estimating genetic relatedness of maize to twenty-three plant species by RFLP analysis. Maydica 38, 231–237.

    Google Scholar 

  • Young J P W 1992 Phylogenetic classification of nitrogen-fixing organisms. In Biological Nitrogen Fixation. Eds. G Stacey, R H Bums and H J Evans, pp 43–86. Chapman and Hall, New York, USA.

    Google Scholar 

  • Zilberstein A, Koncz C, Kaufman R, Geva N, Zamir A and Schell J 1988 Introduction of nifH and nifD into the plant nuclear genome. In Nitrogen Fixation: Hundred Years After. Eds. H Bothe, F J de Bruijn and W E Newton, p 648. Gustav Fischer, Verlag, Stuttgart, Germany.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

G. H. Elkan R. G. Upchurch

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Triplett, E.W. (1996). Diazotrophic endophytes: progress and prospects for nitrogen fixation in monocots. In: Elkan, G.H., Upchurch, R.G. (eds) Current Issues in Symbiotic Nitrogen Fixation. Developments in Plant and Soil Sciences, vol 72. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5700-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5700-1_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6404-0

  • Online ISBN: 978-94-011-5700-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics