Advertisement

Umfangslogik, Inhaltslogik, Theorematic Reasoning

  • Gerhard Heinzmann
Chapter
Part of the Episteme book series (EPIS, volume 22)

Abstract

Around 1891, Husserl opposes, in several articles (cf., Husserl, 1891a and Husserl, 1891b), the logic of extension, developed by Peirce, Schröder and others, and the logic of intension. But his distinction does not concern the difference between the extension and the intension of a concept. In fact, the systems based on the extensional axiom of extensionality [a=b ↔ ∀x (x ɛ ax ɛ b] or the intensional axiom of extensionality [a=b ↔ ∀x (a ɛ xb ɛ x] are equivalent, provided one presupposes the pairing axiom. Husserl has something else in mind: he thinks that both forms of extensional logic cannot reach their purposes, because a simple partial domain of deductive logic is confounded with deductive logic itself (1891b, 244).

Keywords

Mathematical Reasoning Logical Language Deductive Logic Extensional Axiom Pure Possibility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Detlefsen, M. [1992] Poincaré against the Logicicians, Synthese90, 349–378.MathSciNetCrossRefGoogle Scholar
  2. Hintikka, K. J. [1973] Logic, Language-Games and Information. Kantian Themes of Logic, Oxford: Clarendon Press.zbMATHGoogle Scholar
  3. Hintikka, K. J. [1980] C. S. Peirce’s First Real Discovery and its contemporary relevance, The Monist 63, 304–315.CrossRefGoogle Scholar
  4. Heinzmann, G. [1994] Mathematical reasoning and pragmatism in Peirce, in; D. Prawitz, D. Westerstalil, (eds), Logic and Philosophy of Science in Uppsala, Dordrecht/Boston/London: Kluver, pp. 297–310.CrossRefGoogle Scholar
  5. Husserl, E, [1891a] Der Folgerungskalkül und die Inhaltslogik, Vierteljahresschrift für wissenschaftliche Philosophie, 15, 168–189.Google Scholar
  6. Husserl, E, [1891b] Besprechung von ‘E. Schröder: Vorlesungen über die Algebra der Logik’ Göttingsche gelehrte Anzeigen, 243–278.Google Scholar
  7. Peirce, C. S. [1878/79] La logique de la science, Revue philosophique de la France et de l’étranger, 3, 553–569 and 4, 39–57.Google Scholar
  8. Peirce, C. S. [1933–1958] CP: Collected Papers, Ch. Hartshorne, P. Weiss, (eds.), Volume I-VI, Cambridge, MA.: Belknap Press.Google Scholar
  9. Peirce, C. S. [1976a] NE: The New Elements of Mathematics, vol. I–V, C. Eisele, (ed.), The Hague/Paris/Atlantic Highlands: Mouton/Humanities Press.Google Scholar
  10. Poincaré, J. H. [1902] SH: La science et l’hypothése, Paris: Flammarion, 1970.zbMATHGoogle Scholar
  11. Poincaré, J. H. [1908] SM: Science et méthode, Paris: Flammarion.zbMATHGoogle Scholar
  12. Poincaré, J. H. [1905/06] Les mathématiques et la logique, Revue de Métaphysique et de Morale, 13, 815–835 and 14, 17–34.zbMATHGoogle Scholar
  13. Schröder, E. [1890] Vorlesungen über die Algebra der Logik I, Leipzig: Teubner.zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1997

Authors and Affiliations

  • Gerhard Heinzmann
    • 1
  1. 1.Département de PhilosophieUniversité de Nancy IINancyFrance

Personalised recommendations