Skip to main content

Active Spacecraft Potential Control

  • Chapter
The Cluster and Phoenix Missions

Abstract

Charging of the outer surface or of the entire structure of a spacecraft in orbit can have a severe impact on the scientific output of the instruments. Typical floating potentials for magnetospheric satellites (from +1 to several tens of volts in sunlight) make it practically impossible to measure the cold (several eV) component of the ambient plasma. Effects of spacecraft charging are reduced by an entirely conductive surface of the spacecraft and by active charge neutralisation, which in the case of Cluster only deals with a positive potential. The Cluster spacecraft are instrumented with ion emitters of the liquid-metal ion-source type, which will produce indium ions at 5 to 8 keV energy. The operating principle is field evaporation of indium in the apex field of a needle. The advantages are low power consumption, compactness and high mass efficiency. The ion current will be adjusted in a feedback loop with instruments measuring the spacecraft potential (EFW and PEACE). A standalone mode is also foreseen as a back-up. The design and principles of the operation of the active spacecraft potential control instrument (ASPOC) are presented in detail. Flight experience with a similar instrument on the Geotail spacecraft is outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Décréau, P. M. E., Etcheto, J., Knott, K., Pedersen, A., Wrenn, G. L., and Young, D. T.: 1978, ‘Multi-Experiment Determination of Plasma Density and Temperature’, Space Sci. Rev. 22, 633.

    ADS  Google Scholar 

  • Décréau, P. M. E. et al: 1997, this issue.

    Google Scholar 

  • Dixon, A. J. and v. Engel, A.: 1980, ‘Studies of Field Emission Gallium Ion Sources’, Inst. Phys. Conf. Ser. 54, 292.

    Google Scholar 

  • Evans, C. A., Jr. and Hendricks, C. D.: 1972, ‘An Electrohydrodynamic Ion Source for the Mass Spectrometry of Liquids’, Rev. Sci. Instr. 43, 1527.

    Article  Google Scholar 

  • Fahleson, U.: 1967, ‘Theory of Electric Field Measurements Conducted in the Magnetosphere with Electric Probes’, Space Sci. Rev. 7, 238.

    Article  ADS  Google Scholar 

  • Feuerbacher, B. and Fitton, B.: 1972, ‘Experimental Investigation of Photo-Emission From Satellite Surface Material’, J. Appl. Phys. 43(4), 1563.

    Article  ADS  Google Scholar 

  • Grard, R. J. L.: 1973, ‘Properties of the Satellite Photoelectron Sheath Derived From Photoemission Laboratory Results’, J. Geophys. Res. 78, 2885–2906.

    Article  ADS  Google Scholar 

  • Gurnett, D.: 1997, et al, this issue.

    Google Scholar 

  • Gustafsson, G.: 1997, et al., this issue.

    Google Scholar 

  • Johnstone, A.: 1997, et al, this issue.

    Google Scholar 

  • Jones, D.: 1981, ‘Xe+-Induced Ion-Cyclotron Harmonic Waves’, Active Experiments in Space Plasmas, Adv. Space Res. 1(2), 103.

    Article  ADS  Google Scholar 

  • Kingham, D. R. and Swanson, L. W.: 1984, ‘Mechanics of Ion Formation in Liquid Metal Ion Sources’, Applied Phys.. A34, 123.

    Google Scholar 

  • Kintner, P. M. and Kelley, M. C.: 1983, ‘A Perpendicular Ion Beam Instability: Solutions to the Linear Dispersion Relation’, J. Geophys. Res. 88, 357.

    Article  ADS  Google Scholar 

  • Knott, K., Korth, A., Décréau, P., Pedersen, A., and Wrenn, G.: 1983, ‘Observations of the GEOS Equilibrium Potential and its Relation to the Ambient Electron Energy Distribution’, in Spacecraft Plasma Interactions and Their Influence on Field and Particle Measurements, Proceedings of the 17th ESLAB Symposium, ESA SP-198, p. 19.

    Google Scholar 

  • Lindqvist, P.-A.: 1983, ‘The Potential of ISEE in Different Plasma Environments’, in Spacecraft Plasma Interactions and Their Influence on Field and Particle Measurements, Proceedings of the 17th ESLAB Symposium, ESA SP-198, p. 25.

    Google Scholar 

  • Mahoney, J. F., Yahiku, A. Y, Daley, H. L., Moore, R. D., and Perel, J.: 1969, ‘Electrohydrodynamic Ion Source’, J. Applied Phys. 40, 5101.

    Article  ADS  Google Scholar 

  • Miura, A., Okuda, H., and Ashour-Abdalla, M: 1983, ‘Ion-Beam Driven Electrostatic Ion Cyclotron Instabilities’, Geophys. Res. Letters 10(4), 353.

    Article  ADS  Google Scholar 

  • Mott-Smith, H. and Langmuir, I.: 1926, The Theory of Collectors in Gaseous Discharges’, Phys. Rev. 28, 727.

    Article  ADS  Google Scholar 

  • Mourenas, D., Béghin, C., and Lebreton, J. P.: 1989, ‘Electron Cyclotron and Upper Hybrid Harmonics Produced by Electron Beam Injection on Spacelab 1’, Ann. Geophys. 7(5), 519.

    ADS  Google Scholar 

  • Mullen, E. G., Gussenhoven, M. S., Hardy, D. A., Aggson, T. A., Ledley, B. G., and Whipple, E. C.: 1986, ‘SCATHA Survey of High-Level Spacecraft Charging in Sunlight’, J. Geophys. Res. 91, 1474.

    Article  ADS  Google Scholar 

  • Olsen, R. C.: 1982, ‘The Hidden Ion Population of the Magnetosphere’, J. Geophys. Res. 87, 3481.

    Article  ADS  Google Scholar 

  • Olsen, R. C., Chapell, C. R., and Burch, J. L.: 1986, ‘Aperture Plane Potential Control for Thermal Ion Measurements’, J. Geophys. Res. 91, 3117.

    Article  ADS  Google Scholar 

  • Olsen, R. C. and Purvis, C. K.: 1983, ‘Observations of Charging Dynamics’, J. Geophys. Res. 88, 5657.

    Article  ADS  Google Scholar 

  • Paschmann, G. et al.,: 1997, this issue.

    Google Scholar 

  • Pedersen, A.: 1995, ‘Solar Wind and Magnetosphere Plasma Diagnostics by Spacecraft Electrostatic Potential Measurements’, Ann. Geophys. 13(2), 118.

    Article  ADS  Google Scholar 

  • Pedersen, A., Chapell, C. R., Knott, K., and Olsen, R. C.: 1983, ‘Methods for Keeping a Conductive Spacecraft Near the Plasma Potential’, in Spacecraft Plasma Interactions and Their Influence on Field and Particle Measurements, Proceedings of the 17th ESLAB Symposium, ESA SP-198, p. 185.

    Google Scholar 

  • Pedersen, A., Cattell, C. A., Fälthammar, C. G., Formisano, V., Lindqvist, P. A., Mozer, F., and Torbert, R.: 1984, ‘Quasistatic Electric Field Measurements with Spherical Double Probes on the GEOS and ISEE Satellites’, Space Sci Rev. 37, 269.

    Article  ADS  Google Scholar 

  • Reasoner, D. L., Lennartsson, W., and Chappell, C. R.: 1976, in A. Rosen (ed.), ‘Relationship Between ATS-6 Spacecraft Charging Occurrences and Warm Plasma Encounters’, in Spacecraft Charging by Magnetospheric Plasmas, Prog. Astron. Aeron. 47, 89.

    Google Scholar 

  • Rerne, H., et al.: 1997, this issue.

    Google Scholar 

  • Riedler, W., Rlidenauer, F. G., Beck, P., Berzhatyi, V., Fehringer, M., Finsterbusch, R., Neznamova, L., Pammer, R., Pürstl, F., and Steiger, W.: 1992, ‘MIGMAS/A: Test of a Scanning Ion Microscope Onboard the Soviet Space Station MIR’, Proc. International Space Year Conference, Munich, Germany, ESA ISY-4 (COSY-8), p. 127.

    Google Scholar 

  • Rüdenauer, F. G., Steiger, W, Studnicka, H., and Pollinger, P.: 1987, Int. J. Mass Spectr. Ion Proc. 77, 63.

    Article  Google Scholar 

  • Rüdenauer, F. G., Riedler, W, Berzhatyi, V., Fehringer, M., Göschl, E., Kropiunig, C., Neznamova, L., Steiger, W., and Torkar, K.: 1992, ‘LOGION: Operation of a Liquid Metal Ion Emitter Module Under Microgravity’, Proc. International Space Year Conference, Munich, Germany, ESA ISY-4 (COSY-8), p. 121.

    Google Scholar 

  • Schmidt, R. and Pedersen, A.: 1987, ‘Long-Term Behaviour of Photo-Electron Emission from the Electric Field Double Probe Sensors on GEOS-2’, Planetary Space Sci. 35, 61.

    Article  ADS  Google Scholar 

  • Schmidt, R., Arends, H., Nikolaizig, N., and Riedler, W.: 1988, ‘Ion Emission to Actively Control the Floating Potential of a Spacecraft’, Adv. Space Res. 8(1), 187.

    Article  ADS  Google Scholar 

  • Schmidt, R., Schriver, D., and Ashour-Abdalla, M.: 1992, ‘Plasma Response to the Emission of Very Weak Ion Beams for Spacecraft Potential Control’, J. Geophys. Res. 97, 14959.

    Article  ADS  Google Scholar 

  • Schmidt, R., Arends, H., Pedersen, A., Fehringer, M., Riidenauer, F., Steiger, W., Narheim, B. T., Svenes, R., Kvernsveen, K., Tsuruda, K., Hayakawa, H., Nakamura, M., Riedler, W., and Torkar, K.: 1993, ‘A Novel Medium-Energy Ion Emitter for Active Spacecraft Potential Control’, Rev. Sci. Instr. 64(8), 2293.

    Article  ADS  Google Scholar 

  • Schmidt, R., Arends, H., Pedersen, A., Riidenauer, F., Fehringer, M., Narheim, B. T., Svenes, R., Kvernsveen, K., Tsuruda, K., Mukai, T., Hayakawa, H., and Nakamura, M.: 1995, ‘Results from Active Spacecraft Potential Control on the Geotail Spacecraft’, J. Geophys. Res. 100(A9), 17253.

    Article  ADS  Google Scholar 

  • Taylor, G. I.: 1964, ‘Disintegration of Water Drops in an Electric Field’, Proc. Royal Soc. London A280, 383.

    Article  ADS  Google Scholar 

  • Wagner, A. and Hall, T. M.: 1979, ‘Liquid Gold Ion Source’, J. Vac. Sci. Tech. 16, 1871.

    Article  ADS  Google Scholar 

  • Walker, D. N.: 1986, ‘Perpendicular Ion Beam-Driven Instability in a Multicomponent Plasma: Effects of Varying Ion Composition on Linear Flute Mode Oscillations’, J. Geophys. Res. 91, 3305.

    Article  ADS  Google Scholar 

  • Whipple, E. C.: 1981, ‘Potentials of Surfaces in Space’, Kept. Prog. Phys. 44, 1197.

    Article  ADS  Google Scholar 

  • Whipple, E. C., Krinsky, I. S., Torbert, R. B., and Olsen, R. C.: 1983, ‘Anomalously High Potentials Observed on ISEE’, in Spacecraft Plasma Interactions and Their Influence on Field and Particle Measurements, Proceedings of the 17th ESLAB Symposium, ESA SP-198, p. 35.

    Google Scholar 

  • Whipple, E. C., Warnock, J. ML, and Winkler, R. H.: 1974, ‘Effect of Satellite Potential on Direct Ion Density Measurements Through the Plasmapause’, J. Geophys. Res. 79, 179.

    Article  ADS  Google Scholar 

  • Woolliscroft, L. et al: 1997, this issue.

    Google Scholar 

  • Wrenn, G. L.: 1979, ‘Spacecraft Charging’, Nature 277, 11.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Riedler, W. et al. (1997). Active Spacecraft Potential Control. In: Escoubet, C.P., Russell, C.T., Schmidt, R. (eds) The Cluster and Phoenix Missions. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5666-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5666-0_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6389-0

  • Online ISBN: 978-94-011-5666-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics