Skip to main content

Submerged macrophytes as refuges for grazing Cladocera against fish predation: observations on seasonal changes in relation to macrophyte cover and predation pressure

  • Chapter

Part of the book series: Developments in Hydrobiology ((DIHY,volume 119))

Abstract

The provision of a refuge from fish predation for large-bodied Cladocera among stands of submerged macrophytes is thought to be an important stabilising mechanism against nutrient-induced phytoplankton increases in clear water shallow lakes. The occurrence of any refuge effect in relation to the seasonal impact of both macrophyte development and recruitment of zooplanktivorous fish was monitored over the summer months (May to September) in three lakes (Cromes Broad, Hoveton Little Broad/Pound End, and Upton Broad) of variable trophic status, fish community structure and nature and extent of macrophyte cover, in the Norfolk Broads in Eastern England. At all sites, Daphnia spp. exhibited a early summer peak of abundance but had declined rapidly by July probably as a result of predation from underyearling fish. In extensive macrophyte stands (Cromes Broad) Daphnia spp. persisted after its elimination in open water, indicating some refuge effect. At sites with macrophyte cover and/or low fish predation pressure, Daphnia spp. was replaced by Ceriodaphniaspp., both with and without Simocephalussp., thus maintaining large populations of grazing Cladocera, apparently capable of exerting a high grazing pressure on phytoplankton. This occurred, even under high predation pressure from a relatively high density of zooplanktivorous 0+ fish (Cromes Broad), consistent with the refuge hypothesis. In addition, at this site, significant positive associations of cladoceran abundance with increasing macrophyte cover were apparent throughout the summer. From information on the distribution of fish it is suggested that dense macrophytes offer the most suitable refuge through provision of predator-free space.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersson, G., I. Blindlow, A. Hargeby & S. Johansson, 1990. Det våras for Krankesjon [The recovery of Lake Krankesjon]. Anser 29: 53–62.

    Google Scholar 

  • Balls, H., B. Moss & K. Irvine, 1989. The loss of submerged plants with eutrophication I. Experimental design, water chemistry, aquatic plant and phytoplankton biomass in experiments carried out in ponds in the Norfolk Broadland. Freshwat. Biol. 22: 71–87.

    Article  Google Scholar 

  • Beklioglu, M. & B. Moss, 1995. The impact of pH on interactions among phytoplankton algae, zooplankton and perch (Percafluviatilis)in a shallow, fertile lake. Freshwat. Biol. 33: 497–509.

    Article  Google Scholar 

  • Bern, L., 1987. zooplankton grazing on (methyl-3H) Thymidinelabelled natural particle assemblages: determination of filtering rates and food selectivity. Freshwat. Biol. 17: 151–159.

    Article  Google Scholar 

  • Blindlow, I., G. Andersson, A. Hargeby & S. Johansson, 1993. Long-term pattern of alternative stable states in two shallow eutrophic lakes. Freshwat. Biol. 30: 159–167.

    Article  Google Scholar 

  • Bronmark, C. & S. E. B. Weisner, 1992. Indirect effects of fish community structure on submerged vegetation in shallow, eutrophic lakes: an alternative mechanism. Hydrobiologia 243/244: 293–301.

    Article  Google Scholar 

  • Canfield, D. E. Jr., J. V. Shireman, D. E. Colle, W. T. Haller, C. E. Watkins II & M. J. Maceina, 1984. Prediction of chlorophyll aconcentrations in Florida lakes: importance of aquatic macrophytes. Can. J. aquat. Sci. 41: 497–501.

    Article  CAS  Google Scholar 

  • Carpenter, S. R., J. F. Kitchell, J. R. Hodgson, P. A. Cochran, J. J. Elser, M. M. Elser, D. M. Lodge, D. Kretchmer, X. He & C. N. von Ende, 1987. Regulation of lake primary productivity by food web structure. Ecology 68: 1863–1876.

    Article  Google Scholar 

  • Copp, G. H. & M. Peňáz, 1988. Ecology of fish spawning and nursery zones in the flood plain, using a new sampling approach. Hydrobiologia 169: 209–224.

    Article  Google Scholar 

  • Cryer, M., G. Peirson & C. R. Townsend, 1986. Reciprocal interactions between roach Rutilus malus,and zooplankton in a small lake: Prey dynamics and fish growth and recruitment. Limnol. Oceanogr. 31: 1022–1038.

    Article  Google Scholar 

  • Davis, J. C., 1975. Minimal dissolved oxygen requirements of aquatic life with emphasis on Canadian species: A review. J. Fish. Res. Bd Can. 32: 2295–2332.

    Article  Google Scholar 

  • De Nie, A. W., 1987. The decrease in aquatic vegetation in Europe and its consequences for fish populations. EIFAC Occasional Paper 19. FAO, Rome, 88 pp.

    Google Scholar 

  • Diehl, S., 1988. Foraging efficiency of three freshwater fish: effects of structural complexity and light. Oikos 53: 207–214.

    Article  Google Scholar 

  • Dorgelo, J. & M. Heykoop, 1985. Avoidance of macrophytes by Daphnia longispina. Verh. int. Ver. Limnol. 22: 3369–3372.

    Google Scholar 

  • Engel, S., 1988. The role and interactions of submerged macrophytes in a shallow Wisconsin lake. J. Freshwat. Ecol. 4: 229–241.

    Article  Google Scholar 

  • Grimm, M. P. & J. J. G. M. Backx, 1990. The restoration of shallow eutrophic lakes, and the role of northern pike, aquatic vegetation and nutrient concentration. Hydrobiologia 200/201: 557–566.

    Article  Google Scholar 

  • Hall, D. J. & E. E. Werner, 1977. Seasonal distribution and abundance of fishes in the littoral zone of a Michigan lake. Trans. am. Fish. Soc. 106: 545–555.

    Article  Google Scholar 

  • Hambright, K. D., R. J. Trebatoski & R. W. Drenner, 1986. Experimental study of the impacts of Bluegill (Lepomis macrochirus)and Largemouth Bass (Microptems salmoides)on pond community structure. Can. J. Fish. aquat. Sci. 43: 1171–1211

    Article  Google Scholar 

  • Hosper, S. H. & E. Jagtman, 1990. Biomanipulation additional to nutrient control for restoration of shallow lakes in The Netherlands. Hydrobiologia 200/201: 523–534.

    Article  Google Scholar 

  • Howard-Williams, C., 1981. Studies on the ability of a Potamogeton pectinatuscommunity to remove dissolved nitrogen and phosphorus compounds from lake water. J. appl. Ecol. 18: 619–637.

    Article  CAS  Google Scholar 

  • Irvine, K. B. Moss, H. Balls, 1989. The loss of submerged plants with eutrophication II. Relationships between fish and zooplankton in a set of experimental ponds, and conclusions. Freshwat. Biol. 22: 89–107.

    Article  Google Scholar 

  • Jacobsen, L., M. R. Perrow, F Landkildehus. M. Hjørne, T. L. Lauridsen & S. Berg, 1997. Interactions between piscivores, zooplanktivores and zooplankton in submerged macrophytes: preliminary observations from enclosure and pond experiments. Hydrobiologia 342/343: 197–205.

    Article  Google Scholar 

  • James, W. F. & J. V. Barko, 1990. Macrophyte influences on the zonation of sediment accretion and composition in a north-temperate reservoir. Arch. Hydrobiol. 2: 129–142.

    Google Scholar 

  • Jeppesen, E., J. P. Jensen, P. Kristensen, M. Søndergaard, E. Mortensen, O. Sortjkœr & K. Olrik, 1990. Fish manipulation as a lake restoration tool in shallow, eutrophic, temperate lakes 2: threshold levels, long-term stability and conclusions. Hydrobiologia 200/201: 219–227.

    Article  Google Scholar 

  • Knoechel, R. & L. B. Holtby, 1986. Construction and validation of a body-length-based model for the prediction of cladoceran community filtering rates. Limnol. Oceanogr. 31: 1–16.

    Article  Google Scholar 

  • Lammens, E. H. R. R., R. D. Gulati, M.-L. Meijer, E. van Donk, 1990. The first biomanipulation conference: a synthesis. Hydrobiologia 200/201: 619–628.

    Article  Google Scholar 

  • Lauridsen, T. L. & D. M. Lodge, 1996. Avoidance by Daphnia magnaof fish and macrophytes: chemical cues and predatormediated use of macrophyte habitat. Limnol. Oceanogr. 22: 805–810.

    Google Scholar 

  • Lauridsen, T. L., L. J. Pedersen, E. Jeppesen & M. Søndergaard (in press). The importance of macrophyte bed size for composition and horizontal migration of cladocerans in a shallow lake. J. Plankton Res.

    Google Scholar 

  • Meijer, M.-L., E. Jeppesen, E. van Donk, B. Moss, M. Scheffer, E. Lammens, E. van Nes, J. A. van Berkum, G. L. de Jong, B. A. Faafeng & I. P. Jensen, 1994. Long-term responses to fish-stock reduction in small shallow lakes: interpretation of five-year results of four biomanipulation cases in The Netherlands and Denmark. Hydrobiologia 275/276: 457–466.

    Article  Google Scholar 

  • Mitchell, S. F., D. P. Hamilton, W. S. MacGibbon, P. K. B. Nayar & R. N. Reynolds, 1988. Interactions between phytoplankton, submerged macrophytes, black swans and zooplankton in a shallow lake. Int. Revue ges. Hydrobiol. 73: 145–170.

    Article  CAS  Google Scholar 

  • Moss, B., 1983. The Norfolk Broadland: experiments in the restoration of a complex wetland. Biol. Rev. 58: 521–526.

    Article  Google Scholar 

  • Moss, B., H. Balls, K. Irvine & J. H. Stansfield, 1986. Restoration of two lowland lakes by isolation from nutrient-rich water sources with and without removal of sediment. J. appl. Ecol. 23: 391–414.

    Article  CAS  Google Scholar 

  • Moss, B., J. H. Stansfield, K. Irvine, M. R. Perrow & G. L. Phillips, 1996. Progressive restoration of a shallow lake-a twelve-year experiment in isolation, sediment removal and biomanipulation. J. appl. Ecol. 33: 71–86.

    Article  Google Scholar 

  • Mourelatos, S. & G. Lacroix, 1990. In situfiltering rates of Cladocera: effect of body length, temperature, and food concentration. Limnol. Oceanogr. 35: 1101–1111.

    Article  Google Scholar 

  • Ozimek, T., R. D. Gulati & E. van Donk, 1990. Can macrophytes be useful in biomanipulation of lakes? The Lake Zwemlust example. Hydrobiologia 200/201: 399–407.

    Article  Google Scholar 

  • Pennak, R. W., 1973. Some evidence for aquatic macrophytes as repellents for a limnetic species of Daphnia . Int. Revue ges. Hydrobiol. 58: 569–576.

    Article  Google Scholar 

  • Perrow, M. R., B. Moss & J. H. Stansfield, 1994. Trophic interactions in a shallow lake following a reduction in nutrient loading: a long term study. Hydrobiologia 275/276: 43–52.

    Article  Google Scholar 

  • Perrow, M. R., J. Schütten, J. R. Howes, T. Holzer, F. J. Madgwick & A. J. D. Jowitt, 1997. Interactions between coot (Fulica atra) and submerged macrophytes: the role of birds in the restoration process. Hydrobiologia 342/343: 241–255.

    Article  Google Scholar 

  • Persson, L., 1993. Predator-mediated competition in prey refuges: the importance of habitat dependent prey resources. Oikos 68: 12–22.

    Article  Google Scholar 

  • Persson, L. & P. Eklov, 1995. Prey refuges affecting interactions between piscivorous perch and juvenile perch and roach. Ecology 76: 70–81.

    Article  Google Scholar 

  • Peters, R. H. & J. A. Downing. 1984. Empirical analysis of zooplankton filtering and feeding rates. Limnol. Oceanogr. 29: 763–784.

    Article  Google Scholar 

  • Phillips, G. L., D. F. Eminson & B. Moss, 1978. A mechanism to account for macrophyte decline in progressively eutrophicated freshwaters. Aquat. Bot. 4: 103–126.

    Article  Google Scholar 

  • Phillips, G. L., M R. Perrow & J. H. Stansfield, 1996. Manipulating the fish-zooplankton interaction in shallow lakes: a tool for restoration. In Greenstreet, S. P. R. & M. L. Tasker (eds), Aquatic Predators and their Prey. Blackwell Scientific Publications Ltd., Oxford, England: 174–183.

    Google Scholar 

  • Savino, J. & R. A. Stein, 1982. Predator-prey interaction between Largemouth Bass and Bluegills as influenced by simulated, submersed vegetation. Trans. am. Fish Soc. 111: 255–266.

    Article  Google Scholar 

  • Scheffer, M., 1990. Multiplicity of stable states in freshwater systems. Hydrobiologia 200/201: 475–486.

    Article  Google Scholar 

  • Scheffer, M., S. H. Hosper, M.-L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. TREE 8: 275–279.

    PubMed  CAS  Google Scholar 

  • Schriver, P., J. Bøgestrand, E. Jeppesen & M. Søndergaard, 1995. Impact of submerged macrophytes on fish-zooplanktonphytoplankton interactions: large-scale enclosure experiments in a shallow lake. Freshwat. Biol. 33: 255–270.

    Article  Google Scholar 

  • Shapiro, J., 1990. Biomanipulation: the next phase-making it stable. Hydrobiologia 200/201: 13–27.

    Article  Google Scholar 

  • Spencer, C. N. & D. L. King, 1984. Role of fish in regulation of plant and animal communities in eutrophic Ponds. Can J. Fish. aquat. Sci. 41: 1851–1855.

    Article  Google Scholar 

  • Timms, R. M. & B. Moss, 1984. Prevention of growth of potentially dense phytoplankton populations by zooplankton grazing, in the presence of zooplanktivorous fish, in a shallow wetland system. Limnol. Oceanogr. 29: 472–486.

    Article  Google Scholar 

  • Townsend, C. R. & M. R. Perrow, 1989. Eutrophication may produce population cycles in roach, Rutilus rutilus,by two contrasting mechanisms. J. Fish. Biol. 34: 161–164.

    Article  Google Scholar 

  • Townsend, C. R. & A. J. Risebrow, 1982. The influence of light level on the functional response of a zooplanktivorous fish. Oecologia 53: 293–295.

    Article  Google Scholar 

  • Turner, A. M. & G. G. Mittelbach, 1990. Predator avoidance and community structure: interactions among piscivores, planktivores, and plankton. Ecology 71: 2241–2254.

    Article  Google Scholar 

  • Turner, A. M. & G. G. Mittelbach, 1992. Effects of grazer community composition and fish on algal dynamics. Can J. Fish. aquat. Sci. 49: 1908–1915.

    Article  Google Scholar 

  • Van Densen, W. L. T., 1994. Predator enhancement in freshwater fish communities. In Cowx, I. G. (ed.), Rehabilitation of Freshwater Fisheries. Fishing News Books, Blackwell Scientific Publications Ltd., Oxford, England: 102–119.

    Google Scholar 

  • Van Donk, E., R. D. Gulati, A. Iedema & J. T. Meulemans, 1993. Macrophyte-related shifts in the nitrogen and phosphorus contents of the different trophic levels in a biomanipulated shallow lake. Hydrobiologia 251: 19–26.

    Article  Google Scholar 

  • Venugopal, M. N. & I. J. Winfield, 1993. The distribution of juvenile fishes in a hypereutrophic pond: Can macrophytes potentially offer a refuge for zooplankton? J. Freshwat. Ecol. 8: 389–396.

    Article  Google Scholar 

  • Werner, E. E., J. F. Gilliam, D. J. Hall & G. G. Mittelbach, 1983. An experimental test of the effects of predation risk on habitat use in fish. Ecology 64: 1540–1548.

    Article  Google Scholar 

  • Winfield, I. J., 1986. The influence of simulated aquatic macrophytes on the zooplankton consumption rate of juvenile roach, Rutilus rutilus,rudd, Scardinius erythrophthalmus,and perch, Perca fluviatilis. J. Fish Biol. 29: 37–48.

    Article  Google Scholar 

  • Wium-Anderson, S., U. Anthoni, C. Christophersen & G. Houen, 1982. Allelopathic effects on phytoplankton by substances isolated from aquatic macrophytes (Charales). Oikos 39: 187–190.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Lech Kufel Andrzej Prejs Jan Igor Rybak

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Stansfield, J.H., Perrow, M.R., Tench, L.D., Jowitt, A.J.D., Taylor, A.A.L. (1997). Submerged macrophytes as refuges for grazing Cladocera against fish predation: observations on seasonal changes in relation to macrophyte cover and predation pressure. In: Kufel, L., Prejs, A., Rybak, J.I. (eds) Shallow Lakes ’95. Developments in Hydrobiology, vol 119. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5648-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5648-6_25

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6382-1

  • Online ISBN: 978-94-011-5648-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics