Phosphorus release in Lake Großer Müggelsee and its implications for lake restoration

  • Andreas Kleeberg
  • Hans-Peter Kozerski
Part of the Developments in Hydrobiology book series (DIHY, volume 119)


The shallow, hypertrophic L. Großer Müggelsee, Germany, needs to be converted into a meso- to eutrophic level by means of restoration of the catchment area. Despite efforts in phosphorus (P) loading reduction in the inflow, this polymictic lake still demonstrates an year-to-year fluctuating and strong internal P loading with increasing pore-water phosphate concentrations during summer due to formation of anoxic microlayers at the sediment surface. This P release is indirectly governed by external factors including the supply of dissolved oxygen and nitrate via inflow (high runoff), changes in land use (e.g., decreasing nitrogen fertilization) and climatic factors, and is facilitated by wind-induced rapid changes of stratification and mixing events. Important management implications are: first, declines in nitrate concentrations in the inflow may result in depletion of electron acceptors with respect to phosphate desorption and increase the P release. Second, the P release will continue for a long period and thus delay the recovery of the lake. In dredging the uppermost 1 m sediment layer, the P content of the sediment would decrease from 3.5 to between 0.5 and 1.0 mg P g dry weight–1 and result in reduced capability of internal P loading. Because of the high costs, a decision should be made about dredging or whether the limnological improvement of the lake can be achieved via dephosphorization between 11 and 16 years.

Key words

shallow lake phosphorus release lake restoration dissolved oxygen nitrate dredging 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen, J. M., 1976. An ignition method for determination of total phosphorus in lake sediments. Wat. Res. 10: 329–331.CrossRefGoogle Scholar
  2. Andersen, J. M., 1982. Effect of nitrate concentration in lake water on phosphate release from the sediment. Wat. Res. 16: 1119–1126.CrossRefGoogle Scholar
  3. Behrendt, H., B. Nixdorf & W.-G. Pagenkopf, 1993. Phenomenological description of polymixis and influence on oxygen budget and phosphorus release in Lake Müggelsee. Int. Revue ges. Hydrobiol.78: 411–421.CrossRefGoogle Scholar
  4. Berner, R. A., 1980. Early diagenesis. A theoretical approach. Princeton Univ. Press, New York, 241 pp.Google Scholar
  5. Björk, S., 1985. Scandinavian lake restoration activities. International congress on lakes pollution and recovery. Rome 1985, Proceedings: 239–301.Google Scholar
  6. Boers, P. C. M, J. W. T. Bongers, A. G. Wisselo & Th. E. Cappenberg, 1984. Loosdrecht lakes restoration project: sediment phosphorus distribution and release from the sediments. Verh. int. Ver. Limnol. 22: 842–847.Google Scholar
  7. Boers, P. C. M. & F. De Bles, 1991. Ion concentrations in interstitial water as indicators for phosphorus release processes and reactions. Wat. Res. 25: 591–598.CrossRefGoogle Scholar
  8. Boers, P. C. M, J. Van der Does, M. Quaak & J. Van der Vlugt, 1994. Phosphorus fixation with iron(III)chloride: a new method to combat internal phosphorus loading in shallow lakes? Arch. Hydrobiol. 129: 339–351.Google Scholar
  9. Boers, P. C. M. & O. Van Hese, 1988. Phosphorus release from the peaty sediments of the Loosdrecht Lakes (The Netherlands). Wat. Res. 22: 355–363.CrossRefGoogle Scholar
  10. Boström, B., I. Ahlgren & R. Bell, 1985. Internal nutrient loading in aeutrophic lake, reflected in seasonal variations of some sediment parameters. Verh. int. Ver. Limnol. 22: 3335–3339.Google Scholar
  11. Boström, B., J. M. Andersen, S. Fleischer & M. Jansson, 1988. Exchange of phosphorus across the sediment-water interface. Hydrobiologia 170: 229–244.CrossRefGoogle Scholar
  12. Caraco, N. E, J. J. Cole & G. E. Likens, 1993. Sulfate control of phosphorus availability in lakes— A test and re-evaluation of Hasler and Einsele’s model. Hydrobiologia 253: 275–280.CrossRefGoogle Scholar
  13. Carignan, R. & A. Tessier, 1988. The co-diagenesis of sulfur and iron in acid lake sediments of southwestern Quebec. Geochim. Cosmochim. Acta 52: 1179–1188.CrossRefGoogle Scholar
  14. Cooke, G. D., E. B. Welch, S. A. Peterson & P. R. Newroth, 1986. Lake and reservoir restoration Butterworth, Stoneham, 506 pp.Google Scholar
  15. De Groot, W. T., 1981. Phosphate and wind in a shallow lake. Arch. Hydrobiol. 91: 475–489.Google Scholar
  16. Drake, J. C. & S. I. Heaney, 1987. Occurrence of phosphorus and its potential remobilization in the littoral sediments of a productive English lake. Freshwat. Biol. 17: 513–523.CrossRefGoogle Scholar
  17. Driescher, E., H. Behrendt, G. Schellenberger & R. Stellmacher, 1993. Lake Müggelsee and its environment— Natural conditions and anthropogenic impacts. Int. Revue ges. Hydrobiol. 78: 327–343.CrossRefGoogle Scholar
  18. Dudel, G. E. & J.-G. Kohl, 1992. The nitrogen budget of a shallow lake (Großer Müggelsee, Berlin). Int. Revue ges. Hydrobiol. 77: 43–72.CrossRefGoogle Scholar
  19. Dudel, G. E., A. Kleeberg, K. Hilbig & B. Rechenberg, 1992. Phosphorfreisetzung aus dem Sediment des Großen Müggelsees unter besonderer Berücksichtigung des Stickstoff-und Eisenhaushaltes. Limnological Report, Senate for Metropolitan Development and Environmental Protection of Berlin, Berlin, 46 pp.Google Scholar
  20. Einsele, W., 1936. Über die Beziehung des Eisenkreislaufs zum Phosphatkreislauf im eutrophen See. Arch. Hydrobiol. 29: 644–686.Google Scholar
  21. Eyrich, A., 1980. Limnogeologische Untersuchungen in Berliner Gewässern zur Ermittlung der Verbreitung rezenter und subrezenter Sedimente und deren Bedeutung für die Uferfiltration. PhD Thesis, Humboldt-Univ., Berlin, 99 pp.Google Scholar
  22. Fowler, B., J. Drake, D. Hemenway & S. I. Heaney, 1987. An inexpensive water circulation system for studies of chemical exchange using intact sediment cores. Freshwat. Biol. 17: 509–511.CrossRefGoogle Scholar
  23. Freeman, P. R., I. D. McKelvie, B. T. Hart & T. J. Cardwell, 1990. A flow injection analysis method for determination of low levels of phosphorus in natural waters. Anal. chim. Acta 234: 409–416.CrossRefGoogle Scholar
  24. Gächter, R., J. S. Meyer & A. Mares, 1988. Contribution of bacteria to release and fixation of phosphorus in lake sediments. Limnol. Oceanogr. 33: 1542–1558.CrossRefGoogle Scholar
  25. Golterman, H. L., 1984. Sediments, modifying and equilibrating factors in the chemistry of freshwater. Verh. int. Ver. Limnol. 22: 23–59.Google Scholar
  26. Henriksen, A. & A. R. Selmer-Olsen, 1970. Automatic methods for determining nitrate and nitrite in water and soil extracts. Analyst 95: 514–518.CrossRefGoogle Scholar
  27. Hieltjes, A. H. M., 1980. Properties and behaviour of phosphate in sediments. PhD Thesis, Technical Univ. Twente, 301 pp.Google Scholar
  28. Holdren, G. C. & D. E. Armstrong, 1986. Interstitial ion concentrations as an indicator of phosphorus release and mineral formation in lake sediments. In Sly, P. G. (ed.), Sediments and Water Interactions, Springer, New York: 133–147.CrossRefGoogle Scholar
  29. Istvanovics, V, 1994. Fractional composition, adsorption and release of sediment phosphorus in the Kis-Balaton reservoir. Wat. Res. 28: 717–726.CrossRefGoogle Scholar
  30. Jansson, M., 1986. Nitrate as a catalyst for phosphorus mobilization in sediments. In Sly, P. G. (ed.), Sediments and Water Interactions. Springer-Verlag, New York: 382–387.Google Scholar
  31. Jansson, M., 1987. Anaerobic dissolution of iron-phosphorus complexes in sediment due to the activity of nitrate reducing bacteria. Microb. Ecol. 14: 81–89.CrossRefGoogle Scholar
  32. Jensen, H. S., P. Kristensen, E. Jeppesen & A. Skytthe, 1992. Ironphosphorus ratio in surface sediment as an indicator of phosphate release from aerobic sediments in shallow lakes. Hydrobiologia 235/236: 731–743.CrossRefGoogle Scholar
  33. Jeppesen, E., P. Kristensen, J. P. Jensen, M. Sondergaard, E. Mortensen & T. Lauridsen, 1991. Recovery resilience following a reduction in external phosphorus loading of shallow, eutrophic Danish lakes: Duration, regulating factors and methods for overcoming resilience. Mem. Ist. ital. Idrobiol. 48: 127–148.Google Scholar
  34. Keizer, P. & A. J. S. Sinke, 1992. Phosphorus in the sediment of the Loosdrecht lakes and its implications for lake restoration perspectives. Hydrobiologia 233: 39–50.CrossRefGoogle Scholar
  35. Kleeberg, A., 1994. Auswirkungen einer Sedimentbaggerung im Großen Müggelsee auf die Phosphorfreisetzung— Experimentelle Simulation und Versuch einer Prognose. Limnological report, Senate for Metropolitan Development and Environmental Protection of Berlin, Berlin, 31 pp.Google Scholar
  36. Kleeberg, A., 1995. Die Sanierung/Restaurierung des Großen Müggelsees— mit oder ohne eine Baggerung der phosphorreichen Sedimentschichten. In Jaeger, D. & R. Koschel (eds), Verfahren zur Sanierung und Restaurierung stehender Gewässer. Gustav Fischer Verlag, Stuttgart; Limnologie Aktuell 8: 281–293.Google Scholar
  37. Kleeberg, A. & G. Schiungbaum, 1993. In situ phosphorus release experiments in the Warnow River (Mecklenburg, northern Germany). Hydrobiologia 253: 263–274.CrossRefGoogle Scholar
  38. Klein, M., D. Jahn, H. Witt & D. Glase, 1993. Der Große Müggelsee und sein Einzugsgebiet Nutzungen, Belastungen und Sanierungskonzeption. Annual report, Senate for Metropolitan Development and Environmental Protection of Berlin, Berlin, 112 pp.Google Scholar
  39. Kozerski, H.-P, J. Gelbrecht & R. Stellmacher, 1993. Seasonal and long-term variability of nutrients in lake Müggelsee. Int. Rev. ges. Hydrobiol. 78: 423–437.CrossRefGoogle Scholar
  40. Legier, Ch., G. Breitig, G. Steppuhn & V. Vobach, 1986. Ausgewählte Methoden der Wasseruntersuchung. Gustav Fischer Verlag, Jena, 517 pp.Google Scholar
  41. Lijklema, L., 1994. Nutrient dynamics in shallow lakes: effects of changes in loading and role of sediment-water interactions. Hydrobiologia 275/276: 335–348.CrossRefGoogle Scholar
  42. Livingstone, D. A., 1955. A lightweight piston sampler for lake deposits. J. Ecol. 36: 137–139.CrossRefGoogle Scholar
  43. Löfgren, S. & B. Boström, 1989. Interstitial water concentrations of phosphorus, iron and manganese in a shallow, eutrophic Swedish lake— implications for phosphorus cycling. Wat. Res. 23: 1115–1125.CrossRefGoogle Scholar
  44. Marsden, M. W., 1989. Lake restoration by reducing external phosphorus loading: the influence of sediment phosphorus release. Freshwat. Biol. 21: 139–162.CrossRefGoogle Scholar
  45. Mortimer, C. H., 1941. The exchange of dissolved substances between mud and water in lakes. I., J. Ecol. 29: 280–329.CrossRefGoogle Scholar
  46. Mortimer, C. H., 1942. The exchange of dissolved substances between mud and water in lakes. IL, J. Ecol. 30: 147–201.CrossRefGoogle Scholar
  47. Mothes, G., L. Dollan, I. Hoffmann, H.-P. Kozerski & J. Steinmann, 1986. Der Phosphoraustausch zwischen Sediment und Pelagial im Großen Müggelsee. Acta hydrophys. 30: 91–137.Google Scholar
  48. Nausch, G., 1981. Die Sedimente der Darß-Zingster-Boddengewässer— Zustandsanalyse und Stellung im Phosphorkreislauf. PhD Thesis, Rostock Univ., Rostock, 112 pp.Google Scholar
  49. Nixdorf, B., 1994. Polymixis of a shallow lake (Großer Müggelsee, Berlin) and its influence on seasonal phytoplankton dynamics. Hydrobiologia 275/276: 173–186.CrossRefGoogle Scholar
  50. Nürnberg, G. K., 1988. Predicting of phosphorus release rates from total and reductant soluble phosphorus of anoxic lake sediments. Can. J. Fish. aquat. Sci. 45: 453–462.CrossRefGoogle Scholar
  51. OECD, 1982. Eutrophications of waters. Monitoring, Assessment and Control.— OECD report, OECD Paris, 154 pp.Google Scholar
  52. Osgood, R. A., 1988. Lake mixis and internal phosphorus dynamics. Arch. Hydrobiol. 113: 629–638.Google Scholar
  53. Peters, R. H. & A. Cattaneo, 1984. The effects of turbulence on phosphorus supply in a shallow bay of Lake Memphremagog. Verh. int. Ver. Limnol. 22: 185–189.Google Scholar
  54. Phillips, G., R. Jackson, C. Bennett & A. Chilvers, 1994. The importance of sediment phosphorus release in the restoration of very shallow lakes (The Norfolk Broads, England) and implications for biomanipulation. Hydrobiologia 275/276: 445–456.CrossRefGoogle Scholar
  55. Psenner, R., R. Pucsko & M. Sager, 1984. Fractionation of organic and inorganic phosphorus compounds in lake sediments. Arch. Hydrobiol. Suppl. 70: 111–155.Google Scholar
  56. Ripl, W., 1976. Biochemical oxidation of polluted lake sediments with nitrate. A new lake restoration method. Ambio 5: 132–135.Google Scholar
  57. Rossi, G. & G. Premazzi, 1991. Delay in lake recovery caused by internal loading. Wat. Res. 25: 567–575.CrossRefGoogle Scholar
  58. Sas, H., 1989. Lake restoration by reduction of nutrient loading. Academia-Verlag Richarz GmbH, Sankt Augustin, 497 pp.Google Scholar
  59. Schulze, G., C. Y. Liu, M. Brodowski, O. Eisholz, W. Frenzel & J. Möller, 1988. Different approaches to the determination of ammonium ions at low levels by flow injection analyses. Anal. chim. Acta 214: 121–136.CrossRefGoogle Scholar
  60. Sinke, A. J. C. & Th. E. Cappenberg, 1988. Influence of bacterial processes on the phosphorus release in the eutrophic Loosdrecht lakes, The Netherlands. Arch. Hydrobiol. Beih. 30: 5–13.Google Scholar
  61. Sinke, A. J. C., A. A. Cornelese, P. Keizer, O. F. R. Van Tongeren & Th. E. Cappenberg, 1990. Mineralization, pore water chemistry and phosphorus release from peaty sediments in the eutrophic Loosdrecht lakes, The Netherlands. Freshwat. Biol. 23: 587–599.CrossRefGoogle Scholar
  62. Søndergaard, M., 1989. Phosphorus release from hypertrophic lake sediment: experiments with intact sediment cores in a continous flow system. Arch. Hydrobiol. 116: 45–59.Google Scholar
  63. Søndergaard, M., E. Jeppesen, P. Kristensen & O. Sortkjaer, 1990. Interaction between sediment and water in a shallow and hypertrophic lake: a study on phytoplankton collapses in Lake Sobygard, Denmark. Hydrobiologia 191: 139–148.CrossRefGoogle Scholar
  64. Søndergaard, M., P. Kristensen & E. Jeppesen, 1992. Phosphorus release from suspended sediment in the shallow and windexposed Lake Arreso, Denmark. Hydrobiologia 228: 91–99.CrossRefGoogle Scholar
  65. Statgraphics, 1985. STSC Users’ Guide. Software Publishing Group, Rockville, 635 pp.Google Scholar
  66. Terytze, K., 1993. Anreicherung und Verteilung von Schwermetallen und anderen Elementen in Oberflächensedimenten der Berliner Gewässer und ihres Umlandes. Acta hydrochim. hydrobiol. 21: 8–20.CrossRefGoogle Scholar
  67. Terytze, K. & M. Goschin, 1991. Chlorkohlenwasserstoffe in aquatischen Sedimenten in Berlin und Umland. Wasserwirtschaft 81: 3–8.Google Scholar
  68. Tessenow, U., 1972. Lösungs-, Diffusions-und Sorptionsprozesse in der Oberschicht von Sedimenten. I. Ein Langzeitexperiment unter aeroben und anaeroben Bedingungen im Fließgleichgewicht. Arch. Hydrobiol. Suppl. 38: 353–398.Google Scholar
  69. Van der Molen, D. T. & P. C. M. Boers, 1994. Influence of internal loading on phosphorus concentration in shallow lakes before and after reduction of the external loading. Hydrobiologia 275/276: 379–389.CrossRefGoogle Scholar
  70. Vogler, P., 1976. Analysenautomation in Wasserlaboratorien mit flow-stream Automaten. Acta hydrochim. hydrobiol. 4: 115–127.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1997

Authors and Affiliations

  • Andreas Kleeberg
    • 1
  • Hans-Peter Kozerski
    • 2
  1. 1.Dept. Environmental Sciences, Research Station Bad SaarowTechnical University CottbusBad SaarowGermany
  2. 2.Dept. Limnology of Lowland Rivers and Shallow LakesInstitute of Freshwater Ecology and FisheriesBerlinGermany

Personalised recommendations