Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth

  • Erik Jeppesen
  • Jens Peder Jensen
  • Martin Søndergaard
  • Torben Lauridsen
  • Leif Junge Pedersen
  • Lars Jensen
Part of the Developments in Hydrobiology book series (DIHY, volume 119)


Based on data from 233 Danish lakes, enclosure experiments, full-scale experiments and published empirical models we present evidence that top-down control is more important in shallow lakes than in deep lakes, excepting lakes with a high abundance of submerged macrophytes. The evidence in support is: (1) That at a given epilimnion total phosphorus concentration (TP) the biomass of fish per m2 is independent of depth, which means that biomass per m3 is markedly higher in shallow lakes. (2) That the biomass of benthic invertebrates is higher in shallow lakes, which means that the benthi-planktivorous fish are less dependent on zooplankton prey than in deep lakes. By their ability to shift to zooplankton predation their density can remain high even in periods when zooplankton is scarce and they can thereby maintain a potentially high predation pressure on zooplankton. (3) That the possibilities of cladocerans to escape predation by vertical migration are less. (4) That the zooplanktomphytoplankton mass ratio per m2 is lower and presumably then also the grazing pressure on phytoplankton. (5) That nutrient constraints appear to be weaker, as evidenced by the fact that at a given annual mean TP, summer TP is considerably higher in shallow lakes, especially in eutrophic lakes lacking submerged macrophytes. (6) That negative feedback on cladocerans by cyanobacteria is lower as cyanobacterial dominance is less frequent in shallow lakes and more easily broken (at least in Northern temperate lakes), and (7) That top-down control by benthi-planktivorous fish is markedly reduced in lakes rich in submerged macrophytes because the plants serve as a refuge for pelagic cladocerans and encourage predatory fish at the expense of prey fish. We conclude that manipulation of fish and submerged macrophytes may have substantial impact on lake ecosystems, in particular in shallow eutrophic lakes. On the contrary, if the conditions for more permanent changes in plant abundance or fish community structure are lacking the feed-back mechanisms that endeavour a return to the original turbid state will be particularly strong in shallow lakes.

Key words

top-down control shallow lakes trophic structure trophic cascade macrophytes zooplankton fish biomanipulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arndt, H., 1993. Rotifers as predators on components of the microbial web (bacteria, heterotrophic flagellates, ciliates)— a review. Hydrobiologia 255/256: 231–246.CrossRefGoogle Scholar
  2. Arruda, J.,A., G. R. Marzolf & R. T. Faulk, 1983. The role of suspended sediments in the nutrition of zooplankton in turbid reservoirs. Ecology 65: 1225–1235.CrossRefGoogle Scholar
  3. Barica, J., 1975. Collapses of algal blooms in prairie pothole lakes: Their mechanisms and ecological impact. Verh. int. Ver. Limnol. 19: 606–615.Google Scholar
  4. Benndorf, J., 1987. Food web manipulation without nutrient control: A useful strategy in lake restoration? Schweiz. Z. Hydrol. 49: 237–248.CrossRefGoogle Scholar
  5. Benndorf, J., H. Schultz, A. Benndorf, R. Unger, E. Penze, H. Kneschke, K. Kossatrz, R. Dumke, U. Hornic, R. Kruspe & S. Reichels, 1988. Food-web manipulation by enhancement of piscivorous fish stocks: Long-term effects in the hypertrophic Bautzen Reservoir. Limnologica 19: 97–110.Google Scholar
  6. Berg, S., E. Jeppesen & M. Søndergaard, 1997. Pike (Esox luciusL. stocking as a biomanipulation tool. 1. Effects on the fish population in Lake Lyng (Denmark). Hydrobiologia 342/343: 311–318.CrossRefGoogle Scholar
  7. Bernardi, R. de & G. Guisanni, 1990. Are blue-green algae suitable food for zooplankton? An overview. Hydrobiologia 200/201: 29–41.CrossRefGoogle Scholar
  8. Bogdan, K. G. & J. J. Gilbert, 1984. Body size and food size in freshwater zooplankton. Proc. natn. Acad. Sci. U.S.A. 81: 6427–6431.CrossRefGoogle Scholar
  9. Breukelaar, A. W., E. H. R. Lammens, J. P. G. Klein Breteler & I. Tatrai, 1994. Effects of benthivorous bream (Abramis bramaL.) and carp (Cyprinus caprioL.) on sediment resuspension and concentration of nutrients and chlorophyll a. Freshwat. Biol. 32: 113–121.CrossRefGoogle Scholar
  10. Brøgger-Jensen, S. & H. E. Jørgensen, 1992. Vandfugle og søers miljøtilstand [The environmental state of waterfowl and lakes]. Miljøprojekt nr. 200. Danish Environmental Protecton Agency, Copenhagen, 64 pp.Google Scholar
  11. Canfield, D E., J. V. Shireman, D. E. Colle, W. T. Haller, C. E. Watkins, & M J. Maceina, 1984. Prediction of chlorophyil aconcentrations in Florida lakes: Importance of aquatic macrophytes. Can. J. Fish. aquat. Sci. 44: 497–501.CrossRefGoogle Scholar
  12. Carvalho, L., 1990. Top-down control of phytoplankton in a shallow hypertrophic lake: Little Mere (England). Hydrobiologia 200/201: 53–64.Google Scholar
  13. Crowder, L. B. & W. E. Cooper, 1979. Structural complexity and fish-prey interactions in ponds: A point of view. In Johnson, D. L. & R. A. Stein (eds), Response of fish to habitat structure in standing water. North Central Division. Am. Fish. Soc. Spec. Pub. 6: 1–10.Google Scholar
  14. Cryer, M., G. Pierson & C. R. Townsend, 1986. Reciprocal interactions between roach Rutilus rutilus,and zooplankton in a small lake: Prey dynamics and fish growth and recruitment. Limnol. Oceanogr. 31: 1022–1038.CrossRefGoogle Scholar
  15. De Meester, L., 1993. Genotype, fish-mediated chemicals, and planktonic behaviour in Daphnia magna. Ecology 74: 1467–1474.CrossRefGoogle Scholar
  16. De Melo, R., R. France & D. J. McQueen, 1992. Biomanipulation: Hit or myth? Limnol. Oceanogr. 37: 192–207.Google Scholar
  17. Diehl, S., 1988. Foraging efficiency of three freshwater fishes: Effects of structural complexity and light. Oikos 53: 207–214.CrossRefGoogle Scholar
  18. Dodson, S., 1988. The ecological role of chemical stimuli for the zooplankton: the predator-avoidance behaviour in Daphnia ,Limnol. Oceanogr. 33: 1431–1439.Google Scholar
  19. Downing, J. A., C. Plante & S. Lalonde, 1990. Fish production correlated with primary productivity and the morphoedaphic index. Can. J. Fish. aquat. Sci. 47: 1929–1936.CrossRefGoogle Scholar
  20. Engel, S., 1988. The role and interactions of submersed macrophytes in a shallow Wisconsin lake. J. Freshwat. Ecol. 4: 329–340.CrossRefGoogle Scholar
  21. Fort., J., L. Pechar & M. Prazakowa, 1980. Fish as a factor controlling water quality in ponds. In Barica, J. & L. R. Mur (eds), Hypertrophic Ecosystems, Developments in Hydrobiology 2. Dr W. Junk Publishers, The Hague: 255–261.Google Scholar
  22. Fyns Amtskommune, 1995. Vandmiljøovervågning— Arreskov Sø 1994 [Environmental Survey— Lake Arreskov Sø 1994]. Fyns Amt, 123 pp.Google Scholar
  23. Gliwicz, Z. M. & J. Pijanowska, 1989. The role of predation in zooplankton succession. In Sommer, U. (ed.), Plankton Ecology. Springer Verlag, London: 253–296.CrossRefGoogle Scholar
  24. Grimm, M. P. & J. J. G. M. Backx, 1990. The restoration of shallow eutrophic lakes and the role of northern pike, aquatic vegetation and nutrient concentration. Hydrobiologia 200/201: 557–566.CrossRefGoogle Scholar
  25. Gulati, R. D., E. H. R. R. Lammens, M.-L. Meijer & E. van Donk, 1990. Biomanipulation, tool for water management. Hydrobiologia, 200/201: 1–628.CrossRefGoogle Scholar
  26. Hanson, J. M. & M. G. Butler, 1994. Responses of plankton, turbidity and macrophytes to biomanipulation in a shallow prairie lakes. Can. J. Fish. aquat. Sci. 51: 1180–1188.CrossRefGoogle Scholar
  27. Hanson, J. M. & W. C. Leggett, 1982. Empirical prediction of fish biomass and weight. Can. J. Fish. aquat. Sci. 39: 257–263CrossRefGoogle Scholar
  28. Hanson, J. M. & R. H. Peters, 1984. Empirical prediction of crustacean zooplankton biomass and profundal macrobenthos biomass in lakes. Can. J. Fish. aquat. Sci. 41: 439–445CrossRefGoogle Scholar
  29. Hansson, L. A., 1989. The influence of aperiphytic biolayer on phosphorus exchange between substrate and water. Arch. Hydrobiol. 115: 21–26.Google Scholar
  30. Hart, P. C., 1988. zooplankton feeding rates in relation to suspended sediment content: Potential influences on community structure in a turbid reservoir. Freshwat. Biol. 19: 123–139.CrossRefGoogle Scholar
  31. Hasler, A. & F. Jones, 1949. Demonstration of the antagonistic action of large aquatic plants on algae and rotifers. Ecology 30: 359–364.CrossRefGoogle Scholar
  32. Havens, K. E., 1991. Fish-induced sediment resuspension: Effects on phytoplankton biomass and community structure in a shallow hypereutrophic lake. J. Plankton. Res. 13: 1163–1176.CrossRefGoogle Scholar
  33. Hewett, S. W. & D. J. Stewart, 1989. Zooplanktivory by alewives in Lake Michigan: Ontogenetic, seasonal and historical patterns. Trans. am. Fish. Soc. 118: 581–596.CrossRefGoogle Scholar
  34. Hoyer, M. V. & J. R. Jones, 1983. Factors affecting the relation between phosphorus and chlorophyll ain Midwestern reservoirs. Can. J. Fish. Aquat. Sci. 40: 192–199.CrossRefGoogle Scholar
  35. Hunding, C., (ed.) 1977. Danish Limnolgy. Reviews and Perspectives. Folia limnol. scand. 17, 136 pp.Google Scholar
  36. Irvine, K., B. Moss & J. Stansfield, 1990. The potential of artificial refugia for maintaining a community of large-bodied cladocera against fish predation in a shallow eutrophic lake. Hydrobiologia 200/201: 379–389.CrossRefGoogle Scholar
  37. Jansson, M., 1989. Role of benthic algae in transport of nitrogen from sediment to lake water in a shallow clearwater lake. Arch. Hydrobiol. 89: 101–109.Google Scholar
  38. Jensen, J. P., E. Jeppesen, K. Olrik & P. Kristensen, 1994. Impact of nutrients and physical factors on the shift from cyanobacterial to chlorococcal green algal dominance in shallow Danish lakes Can. J. Fish. aquat. Sci. 51: 1692–1699.CrossRefGoogle Scholar
  39. Jeppesen, E., J. P. Jensen, P. Kristensen, M. Søndergaard, E. Mortensen, O. Sortkjaer & K. Olrik, 1990b. Fish manipulation as a lake restoration tool in shallow, eutrophic, temperate lakes 2: Threshold levels, long-term stability and conclusions. Hydrobiologia 200/201: 219–227.CrossRefGoogle Scholar
  40. Jeppesen, E., P. Kristensen, J. P. Jensen, M. Søndergaard, E. Mortensen & T. Lauridsen, 1991. Recovery resilience following a reduction in external phosphorus loading of shallow, eutrophic Danish lakes: Duration, regulating factors and methods for overcoming resilience. Mem Ist. ital. Idrobiol. 48: 127–148.Google Scholar
  41. Jeppesen, E. M. Søndergaard, E. Kanstrup, B. Petersen, R. B. Henriksen, M. Hammershøj, E. Mortensen, J.P. Jensen & A. Have, 1994. Does the impact of nutrients on the biological structure and function of brackish and freshwater lakes differ? Hydrobiologia 275/276: 15–30.CrossRefGoogle Scholar
  42. Jeppesen, E., M. Søndergaard, B. Kronvang, J. P. Jensen, L. M. Svendsen & T. Lauridsen. Lake and catchment management in Denmark, 1997. In Harper, D., B. Brierley, A. Ferguson, G. Phillips & J. Madgwick (eds), The ecological basis for lake and reservoir management. J. Wiley & Sons.Google Scholar
  43. Jeppesen, E., M. Søndergaard, E. Mortensen, P. Kristensen, B. Riemann, H. J. Jensen, J. P. Müller, O. Sortkjaer, J. P. Jensen, K. Christoffersen, S. Bosselmann & E. Dall, 1990a. Fish manipulation as a lake restoration tool in shallow, eutrophic temperate lakes 1: Cross-analysis of three Danish case-studies. Hydrobiologia 200/201: 205–21CrossRefGoogle Scholar
  44. Kirk, K. L., 1991. Inorganic particles alter competition in grazing plankton: the role of selective feeding. Ecology 72: 915–923.CrossRefGoogle Scholar
  45. Kirk, K. L. & J. J. Gilbert, 1990. Suspended clay and the population dynamics of planktonic rotifers and cladocerans. Ecology 71: 1741–1755.CrossRefGoogle Scholar
  46. Kristensen, P., J. P. Jensen & E. Jeppesen, 1991. Simple empirical lake models. Nitrogen and phosphorus in fresh and marine waters. NPo forskning fra Miljøstyrelsen. C-abstracts. Danish Environmental Protection Agency, Copenhagen, 125–145.Google Scholar
  47. Lammens, E. H. R. R., D. Gulati, M-L. Meijer & E. van Donk, 1990. The first biomanipulation conference: A synthesis. Hydrobiologia 200/201: 619–627.CrossRefGoogle Scholar
  48. Lampert, W., 1993. Ultimate causes of diel vertical migration of zooplankton: New evidence for the predator-avoidance hypothesis. Arch. Hydrobiol. Beih. Ergebn. Limnol. 39: 79–88.Google Scholar
  49. Lauridsen, T., E. Jeppesen & M. Søndergaard, 1994. Colonization and succession of submerged macrophytes in shallow Lake Vseng during the first five years following fish-manipulation. Hydrobiologia 275/276: 233–242.CrossRefGoogle Scholar
  50. Lauridsen T. & D. Lodge, 1996. Avoidance by Daphnia magnaStraus of fish and macrophytes: Chemical cues and predator-mediated use of macrophyte habitat. Limnol. & Oceanogr. 41: 794–798.CrossRefGoogle Scholar
  51. Lauridsen, T. & I. Buenk, 1996. Diel changes in the horizontal distribution of zooplankton in the littoral zone of two eutrophic shallow lakes. Arch. Hydrobiol. 137: 161–176.Google Scholar
  52. Lauridsen, T., L. Junge Pedersen, E. Jeppesen & M. Søndergaard, 1996. The importance of macrophyte bed size for composition and horizontal migration of cladocerans in a shallow lake. J. Plankton Res. 18: 2283–2294.CrossRefGoogle Scholar
  53. Lauridsen. T. L., E. Jeppesen & F.Ø. Andersen, 1993. Colonization of submerged macrophytes in shallow fish manipulated Lake Vaeng: Impact of sediment composition and water fowl grazing. Aquat. Bot. 46: 1–15.CrossRefGoogle Scholar
  54. Leah, R. T., B. Moss & D. E. Forrest, 1980. The role of predation in causing major changes in the limnology of a hyper-eutrophic lake. Int. Rev. ges. Hydrobiol. 65: 223–247.CrossRefGoogle Scholar
  55. Lindegaard, C., 1994. The role of zoobenthos in energy flow in two shallow lakes. Hydrobiologia 275/276: 313–322.CrossRefGoogle Scholar
  56. Loose, C. J. E., von Elert & P. Dawidowicz, 1993. Chemically induced diel vertical migration in Daphnia:A new bioassay for kairomones exuded by fish. Arch. Hydrobiol. 126: 329–337.Google Scholar
  57. Luecke, C., M. J. Vanni, J. J. Magnuson, J. F. Kitchell & P. J. Jacobson, 1990. Seasonal regulation of Daphnia populations by planktivorous fish: Implications for the clearwater phase. Limnol. Oceanogr. 35: 1718–1733.CrossRefGoogle Scholar
  58. McQueen, D. J., 1990. Manipulating lake community structure: Where do we go from here? Freshwat. Biol. 23: 613–620.Google Scholar
  59. Meijer, M. L, W. de Haan, A. W. Breukelaar & H. Buiteveld, 1990. Is reduction of the benthivorous fish an important cause of high transparency following biomanipulation in shallow lakes? Hydrobiologia 200/201: 303–316.CrossRefGoogle Scholar
  60. Meijer, M. L., E. Jeppesen, E. van Donk., B. Moss, M. Scheffer, E. H. R. R. Lammens, E. Van Nes, J. A. Berkum, G. J. de Jong, B. A. Faafeng & J. P. Jensen, 1994. Long-term responses to fish-stock reduction in small shallow lakes: interpretation of five year results of four biomanipulation cases in the Netherlands and Denmark. Hydrobiologia 275/276: 457–466.CrossRefGoogle Scholar
  61. Mills, E. L. & J. L. Forney, 1983. Impact on Daphnia pulexof predation by yellow perch in Oneida Lake, New York. Trans. am. Fish. Soc. 112: 154–161.CrossRefGoogle Scholar
  62. Mills, E. L., J. L. Forney & K. J. Wagner, 1987. Fish predation and its cascading effect on the Oneida Lake food chain. In Kerfoot, W. C. & A. Sih (eds), Predation: Direct and indirect effects on aquatic communities. University Press of New England, Hanover, New Hampshire: 118–131.Google Scholar
  63. Mortensen, E., E. Jeppesen, M. Søndergaard & L. Kamp Nielsen (eds), 1994. Nutrient Dynamics and Biological Structure in Shallow Freshwater and Brackish Lakes. Developments in Hydro-biology 94. Kluwer Academic Publishers, Dordrecht, 507 pp. Reprinted from Hydrobiologia 275/276.Google Scholar
  64. Moss, B., 1990. Engineering and biological approaches to the restoration from eutrophication of shallow lakes in which aquatic plant communities are important components. Hydrobiologia 200/201: 367–378.CrossRefGoogle Scholar
  65. Moss, B., S. McGowan & L. Carvalho, 1994. Determination of phytoplankton crops by top-down and bottom-up mechanisms in a group of English lakes, the West Midland Meres. Limnol. Oceanogr. 39: 1020–1029.CrossRefGoogle Scholar
  66. Nygaard, G., 1949. Hydrobiological studies on some Danish ponds and lakes. Biol. Skr. K. Dan. Vidensk. Selsk. 7: 1–239.Google Scholar
  67. Pavoni, M., 1963. The importance of nanoplankton compared to netplankton. Schweiz. Z. Hydrol. 25: 219–341.Google Scholar
  68. Pennak, R. W., 1966. Structure of zooplankton populations in the littoral macrophyte zone of some Colorado lakes. Trans. am. microsc. Soc. 85: 329–349.CrossRefGoogle Scholar
  69. Pennak, R. W., 1973. Some evidence for aquatic macrophytes as repellents for a limnetic species of Daphnia . Int. Revue, ges. Hydrobiol. 58: 569–576.CrossRefGoogle Scholar
  70. Perrow, M. R., J. Schütten, J. R. Howes, T. Holzer, F. J. Madgwick & A. J. D. Jowitt, 1997. Interactions between coot (Hypophthalmichthys molitrixand submerged macrophytes: the role of birds in the restoration process. Hydrobiologia 342/343: 241–255.CrossRefGoogle Scholar
  71. Persson, L., 1991. Behavioural response to predators reverses the outcome of competition between prey species. Behav. Ecol. Sociobiol. 28: 101–105.CrossRefGoogle Scholar
  72. Persson, L., G. Anderson, S. F Hamrin & L. Johansson, 1988. Predation regulation and primary production along the productivity gradient of temperate lake ecosystems. In Carpenter, S. R. (ed.), Complex interactions in lake communities. Springer Verlag, New York: 45–65.CrossRefGoogle Scholar
  73. Phillips, G. L., M. Perrow & J. Stansfield, 1996. Manipulating the fish-zooplankton interaction in shallow lakes: a tool for restoration. In S. P. R. Greenstreet & M. L. Tasker (eds), Aquatic predators and their prey. Blackwell Scientific Publications, Oxford: 174–183.Google Scholar
  74. Prejs, A., A. Martyniak, S. Boron, P. Hliwa & P. Koperski, 1994. Food web manipulation in a small eutrophic Lake Wirbel, Poland: Effect of stocking with juvenile pike on planktivorous fish. Hydrobiologia 275/276: 65–70.CrossRefGoogle Scholar
  75. Pridmore, R. D., W. N. Vant & J. C. Rutherford, 1985. Chlorophyllnutrient relationships in North Island lakes (New Zealand). Hydrobiologia 121: 181–189.CrossRefGoogle Scholar
  76. Quade, H. W., 1969. Cladoceran faunas associated with aquatic macrophytes in some lakes in northwestern Minnesota. Ecology 50: 170–179.CrossRefGoogle Scholar
  77. Quiros, R., 1990. Predictors of relative fish biomass in lakes and reservoirs of Argentina. Can. J. Fish. aquat. Sci. 47: 928–939.CrossRefGoogle Scholar
  78. Reynolds, C. S., 1984. The ecology of freshwater phytoplankton. Cambridge University Press, Cambridge, 384 pp.Google Scholar
  79. Reynolds, C. S., 1994. The ecological basis for the successful biomanipulation of aquatic communities. Arch. Hydrobiol. 130: 1–33.Google Scholar
  80. Riemann, B., K. Christoffersen, H. J. Jensen, J. P. Müller, C. L. Lindegaard & S. Bosselmann, 1990. Ecological consequences of a manual reduction of roach and bream in a eutrophic, temperate lake. Hydrobiologia 200/201: 241–250.CrossRefGoogle Scholar
  81. Ringelberg, J., 1991. Enhancement of the phototactic reaction in Daphnia hyalinaby a chemical mediated by juvenile perch (Perca fluviatilis). J. Plankton Res. 13: 17–25.CrossRefGoogle Scholar
  82. Sas, H. (Ed.), 1989. Lake restoration by reduction of nutrient loading. Expectation, experiences, extrapolation. Acad. Ver. Richardz Gmbh. 497 pp.Google Scholar
  83. Scheffer, M., 1990. Multiplicity of stable states in freshwater systems. Hydrobiologia 200/201 (Dev. Hydrobiol. 61): 475–486.CrossRefGoogle Scholar
  84. Scheffer, M., S. H. Hosper, M.-L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends in ecology and evolution (TREE) 8: 275–279.CrossRefGoogle Scholar
  85. Schriver, P., J. Bøgestrand, E. Jeppesen & M. Søndergaard, 1995. Impact of submerged macrophytes on the interactions between fish, zooplankton and phytoplankton: Large-scale enclosure experiments in a shallow lake. Freshwat. Biol. 33: 255–270.CrossRefGoogle Scholar
  86. Shapiro, J. & D. I. Wright, 1984. Lake restoration by biomanipulation. Round Lake, Minnesota— the first two years. Freshwat. Biol. 14: 371–383.Google Scholar
  87. Sommer, U., 1985. Comparison between steady state and non-steady state competition: Experiments with natural phytoplankton. Limnol. Oceanogr. 30: 335–346.CrossRefGoogle Scholar
  88. Søndergaard, M., E. Jeppesen & S. Berg, 1997. Pike (Esox lucius)stocking as a biomanipulation tool, 2. Effects on lower trophic levels in Lake Lyng, Denmark. Hydrobiologia 342/343: 319–325.CrossRefGoogle Scholar
  89. Søndergaard, M., E. Jeppesen, P. Kristensen & O. Sortkjær, 1990a. Interactions between sediment and water in a shallow hypertrophic lake: A study on phytoplankton collapses in Lake Søbygard, Denmark. Hydrobiologia 191: 149–164.CrossRefGoogle Scholar
  90. Søndergaard, M., E. Jeppesen, E. Mortensen, E. Dall, P. Kristensen & O. Sortkjaer, 1990b. Phytoplankton biomass reduction after planktivorous fish reduction in a shallow, eutrophic lake: A combined effect of reduced internal P-loading and increased zooplankton grazing. Hydrobiologia 200/201: 229–24CrossRefGoogle Scholar
  91. Søndergaard, M., P. Kristensen & E. Jeppesen, 1992. Phosphorus release from resuspended sediment in the shallow and wind exposed Lake Arresø, Denmark. Hydrobiologia 228: 91–99.CrossRefGoogle Scholar
  92. Søndergaard, M., L. Olufsen, T. Laundsen, E. Jeppesen & T. Vindbaek Madsen, 1996. The impact of grazing waterfowl on submerged macrophytes: In situ experiments in a shallow eutrophic lake. Aquat. Bot. 53: 73–84.CrossRefGoogle Scholar
  93. Stansfield, J. H., M. R. Perrow, L. D. Tench, A. J. D. Jowitt & A. A. L. Taylor, 1997. Submerged macrophytes as refuges for grazing Cladocera against fish predation: observations on seasonal changes in relation to macrophyte cover and predation pressure. Hydrobiologia 342/343: 229–240.CrossRefGoogle Scholar
  94. Timms, R. M. & B. Moss, 1984. Prevention of growth of potentially dense phytoplankton populations by zooplankton grazing in the presence of zooplanktivorous fish, in a shallow wetland ecosystem. Limnol. Oceanogr. 29: 472–486.CrossRefGoogle Scholar
  95. Van Donk, E., E. De Deckere, J. G. P. Klein Breteler & J. Meulemans, 1994. Herbivory by waterfowl and fish on macrophytes in a biomanipulated lake: Effects on long-term recovery. Verh. int. Ver. Limnol. 25: 2139–2143.Google Scholar
  96. Whiteside, M. C., 1988.0+ fish as major factors affecting abundance patterns of littoral zooplankton. Verh. int. Ver. Limnol. 23: 1710–1714.Google Scholar
  97. Windolf, J., E. Jeppesen, M. Søndergaard, J. P. Jensen & L. Sortkjaer, 1993. Vandmiljøplanens Overvågningsprogram 1992. Ferske vandornråder— Søer. [The Action Plan on the Aquatic Environment 1992. Freshwater area— Lakes]. National envir. Res. Inst., 129 pp.Google Scholar
  98. Winfield, L. J., 1986. The influence of simulated aquatic macrophytes on the zooplankton consumption rate of juvenile roach, Rutilus rutilus,rudd, Scardinius erythrophthalmus,and perch, Perca fluviatilis. J. Fish. Biol. 29: 37–48.CrossRefGoogle Scholar
  99. Zdanowski B., 1982. Variability of nitrogen and phosphorus contents and lake eutrophication. Pol. Arch. Hydrobiol. 29: 3–4.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1997

Authors and Affiliations

  • Erik Jeppesen
    • 1
  • Jens Peder Jensen
    • 1
  • Martin Søndergaard
    • 1
  • Torben Lauridsen
    • 1
  • Leif Junge Pedersen
    • 1
  • Lars Jensen
    • 1
  1. 1.Dept. of Lake and Estuarine EcologyNational Environmental Research InstituteSilkeborgDenmark

Personalised recommendations