Skip to main content

A Beginner’s Guide to LPM Materials Properties Measurements

Part II: Experimental Aspects

  • Chapter
Micro/Nanotribology and Its Applications

Part of the book series: NATO ASI Series ((NSSE,volume 330))

  • 373 Accesses

Abstract

This paper is intended for researchers who already have some knowledge of local probe microscopes (LPM) and their operational modes and who wish to begin making measurements of materials properties with nanometer-scale lateral resolution. The difficulties of making quantitative measurements are discussed. The correct choice of LPM configuration and excitation frequency can greatly enhance the signal-to-noise ratio and linearity of response of the microscope to the interaction stiffness. Rheological models of different LPM setups are used to determine the best configuration for a given experiment. Most materials are best studied by means of a transducer placed underneath the sample and excited at frequencies above the highest tip-sample resonance. Common image artifacts are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. U. Dürig, J.K. Gimzewski, and D.W. Pohl. Experimental observation of forces acting during scanning tunneling microscopy. Phys. Rev. Lett., 57, 2403–06, (1986).

    Article  ADS  Google Scholar 

  2. U. Dürig, O. Züger, and A. Stalder. Interaction force detection in scanning probe microscopy: Methods and applications. J. Appl. Phys., 72, 1778–98, (1992).

    Article  ADS  Google Scholar 

  3. S.M. Hues, C.F. Draper, K.P. Lee, and R.J. Colton. Effect of PZT and PMN actuator hysteresis and creep on nanoindentation measurements using force microscopy. Rev. Sci. Instruments, 65, 1561–65, (1994).

    Article  ADS  Google Scholar 

  4. J.P. Cleveland, S. Manne, D. Bocek, and P.K. Hansma. A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy. Rev. Sci. Instrum., 64, 403–5, (1993).

    Article  ADS  Google Scholar 

  5. N.A. Burnham, G. Gremaud, A.J. Kulik, P.-J. Gallo, and F. Oulevey. Materials properties measurements: Choosing the optimal SPM configuration. J. Vac. Sci. Technol. B, 14, 1308–12, (1996).

    Article  Google Scholar 

  6. N.A. Burnham, A.J. Kulik, G. Gremaud, P.-J. Gallo, and F. Oulevey. Scanning local-acceleration microscopy. J. Vac. Sci. Technol. B, 14, 794–99, (1996).

    Article  Google Scholar 

  7. E.-L. Florin, M. Radmacher, B. Fleck, and H.E. Gaub. Atomic force microscope with magnetic force modulation. Rev. Sci. Instrum., 65, 639–43, (1994).

    Article  ADS  Google Scholar 

  8. S.P. Jarvis and J.B. Pethica. Hydrophobic Surface Interactions Studied Using a Novel Force Microscope, in Forces in Scanning Probe Methods, volume 286, pages 105–12. H.-J. Güntherodt, D. Anselmetti and E. Meyer, eds., Kluwer Academic NATO ASI Series, (1995).

    Google Scholar 

  9. M. Heuberger, G. Dietler, and L. Schlapbach. Mapping the local Young’s modulus by analysis of the elastic deformations occuring in atomic force microscopy. Nanotechnol., 5, 12–23, (1994).

    Google Scholar 

  10. N.A. Burnham, O.P. Behrend, F.L. Hutson, F. Oulevey, P.-J. Gallo, E. Dupas, A.J. Kulik, G. Gremaud, H.M. Pollock, and G.A.D. Briggs. How does a tip tap? to be submitted.

    Google Scholar 

  11. O. Kolosov and K. Yamanaka. Nonlinear detection of ultrasonic vibrations in an atomic force microscope. Jpn. J. Appl. Phys., 32, L1095–98, (1993).

    Article  ADS  Google Scholar 

  12. N.A. Burnham, A.J. Kulik, G. Gremaud, and G.A.D. Briggs. Nanosubharmonics: the dynamics of small nonlinear contacts. Phys. Rev. Lett., 74, 5092–95, (1995).

    Article  ADS  Google Scholar 

  13. N.A. Burnham, A.J. Kulik, and G. Gremaud. Tip-Surface Interactions, in Procedures in Scanning Probe Microscopy. R.J. Colton et al., eds., John Wiley and Sons, New York, (1996).

    Google Scholar 

  14. K. Takahashi, N.A. Burnham, H.M. Pollock, and T. Onzawa. Force curves obtained from elastic contact theory, and its application. to be submitted.

    Google Scholar 

  15. C.A.J. Putman, K.O. Van der Werf, B.G. De Grooth, N.F. Van Hu1st, and J. Greve. Tapping mode atomic force microscopy in liquid. Appl. Phys. Lett., 64, 2454–6, (1994).

    Article  ADS  Google Scholar 

  16. TopoMetrix. Artifacts in SPM. Santa Clara, CA 95054, (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Burnham, N.A. et al. (1997). A Beginner’s Guide to LPM Materials Properties Measurements. In: Bhushan, B. (eds) Micro/Nanotribology and Its Applications. NATO ASI Series, vol 330. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5646-2_35

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5646-2_35

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6381-4

  • Online ISBN: 978-94-011-5646-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics