Skip to main content

Nucleosome and Chromatin Structures and Functions

  • Chapter
  • 366 Accesses

Part of the book series: NATO ASI Series ((ASHT,volume 31))

Abstract

The diploid human genome contains 6x109bp of DNA of total length 2.04 m packaged into cell nuclei 6-8 µm in diameter. Despite decades of intensive research we are still far from understanding the rules that govern the packaging of these enormously long eukaryotic DNA molecules into chromosomes and cell nuclei. Some answers will come from the sequence data generated by the Human Genome Project, particularly the identification of sequence motifs involved in both the long range organization of chromosomes and in nuclear architecture. Such sequence motifs probably bind to proteins in the chromosomal scaffold, the nuclear matrix and nuclear membrane. How chromosome organization and nuclear architecture are involved in chromosome function is not well understood. In an attractive working model for long-range order in metaphase chromosomes the DNA is constrained by scaffold proteins into loops of average size 50 kbps [1]. These loops are packaged by the histones H1, H2A, H2B, H3 and H4 into nucleosomes and higher order chromatin structures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Saitoh, Y., Laemntli, U.K. (1993) From the Chromosomal Loops and the Scaffold to the Classic Bands of Metaphase ChromosomesCold Spring Harbor Symposia on Quantitative Biology 58, 755–765.

    Article  PubMed  CAS  Google Scholar 

  2. van Holde, K.E. (1988)Chromatin(A. Rich, ed.) Springer-Verlag, New York, Berlin, Heidelberg, London, Paris, Tokyo.

    Google Scholar 

  3. Bradbury, E.M. (1992) Reversible Histone Modifications and the Chromosome Cell CycleBioassays 14, 9–16.

    Article  CAS  Google Scholar 

  4. Moss, T., Cary, P.D., Abercrombie, B.D., Crane-Robinson, C., and Bradbury, E.M. (1976) A pH- Dependent Interaction Between Histones H2A and H2B Involving Secondary and Tertiary FoldingEur. J. Biochem. 71337–350.

    Article  PubMed  CAS  Google Scholar 

  5. Arents, G., Burlingame, R.W., Wang, B.C., Love, W.E., and Moudrianakis, E.N. (1991) The Nucleosomal Core Histone Octamer at 3.1 A resolution: A Tripartite Protein Assembly and a Left-Handed SuperhelixProc. Natl. Acad. Sci. USA 88, 10148–10152.

    Article  PubMed  CAS  Google Scholar 

  6. Moss, T., Cary, P.D., Crane-Robinson, C., and Bradbury, E.M. (1976) Physical Studies on the H3/H4 Histone TetramerBiochemistry 15, 2261–2267.

    Article  PubMed  CAS  Google Scholar 

  7. Bradbury, E.M., Chapman, G.E., Danby, S.E., Hartman, P.G., and Riches, P.L. (1976) Studies on the Role and Mode of Operation of the Very-Lysine-Rich Histone H1 (F1) in Eukaryote Chromatin. The Properties of the N-Terminal and C-Terminal Halves of Histone 111Eur. J. Biochem. 57521–528.

    Article  Google Scholar 

  8. Hartman, P.G., Chapman, G.E., Moss, T., and Bradbury, E.M. (1977) Studies on the Role and Mode of Operation of the Very-Lysine-Rich Histone H1 in Eukaryote ChromatinEur. J. Biochem. 77456.

    Google Scholar 

  9. Chapman, G.F., Hartman, P.G., Cary, P.D., Bradbury, E.M., and Lee, D.R. (1978) A Nuclear Magnetic Resonance Study of the Globular Structure of the H 1 HistoneEur. J. Biochem. 8635.

    Article  PubMed  CAS  Google Scholar 

  10. Johnson, E.M., and Allfrey, V.G. (1978) In:Biochemistry Actions of Hormones“, Vol. 5 (G. Litwac. ed.) Academic Press, New York.

    Google Scholar 

  11. Matthews, H.R. and Waterborg, J. (1985) in “The Enzymology of Post Translational Modifications of Proteins”, Vol. 2, pp. 125–185.

    Google Scholar 

  12. Yasuda, H., Mueller, R.D., and Bradbury, E.M. (1986) Molecular Regulation of Nuclear Events in “Mitosis and Meiosis”, (Schlegel, R.A., Halleck, M.S., and Rao, P.N., eds.), Academic Press, New York pp. 391–361.

    Google Scholar 

  13. Busch, H. and Goldknoph, I.L. (1981) Ubiquitin-Protein ConjugatesMol. Cell Biol. 40173–187.

    CAS  Google Scholar 

  14. Christensen, M.E. and Dixon, G.H. (1982) Hyperacetylation of Histone-H4 Correlates with the Terminal, Transcriptionally Inactive Stages of Spermatogenesis in Rainbow TroutDev. Biol. 93404–415.

    Article  PubMed  CAS  Google Scholar 

  15. Goldknoph, I.L., Wilson, G., Ballard, N.R., and Busch, H. (1980) Chromatin Conjugate Protein A24 is Cleaved and Ubiquitin is Lost During Chicken ErythropoiesisJ. Biol. Chem. 25510555–10558.

    Google Scholar 

  16. Levinger, L. and Varshaysky, A. (1982) Selective Arrangement of Ubiquitinated and D1 Protein-Containing Nucleosomes Within the Drosophila GenomeCell 28, 375–385.

    Article  PubMed  CAS  Google Scholar 

  17. Matsui, S.I., Seon, B.K., and Sandberg, A.A. (1979) Disappearance of a Structural Chromatin Protein A24 in Mitosis: Implications for Molecular Basis of Chromatin CondensationProc. Natl. Acad. Sci. USA 766386–6390.

    Article  CAS  Google Scholar 

  18. Mueller, R.D., Yasuda, H., Hatch, C.L., Bonner, W.M., and Bradbury, E.M. (1985) Phosphorylation of Histone H 1 Through the Cell Cycle ofPhysarum polycephalum J. BioL. Chem.2605147–5153.

    PubMed  CAS  Google Scholar 

  19. Bradbury, E.M., Inglis, R.J., and Matthews, H.R. (1974) Control of Cell Division by Very Lysine-Rich Histone Fi PhosphorylationNature 241, 257–261.

    Article  Google Scholar 

  20. Bradbury, E.M., Inglis, R.J., Matthews, H.R., and Langan, T.A. (1974) Molecular Basis of Mitotic Cell Division in EukaryotesNature 249, 553.

    Article  PubMed  CAS  Google Scholar 

  21. Gurley, L.R., D’Anna, J.A., Halleck, M.S., Barham, S.S., Walters, R.A., Jett, J.H., and Tobey, R.A. (1981) In:Cold Spring Harbor Conferences on Cell Proliferation 8, 1073–1093.

    CAS  Google Scholar 

  22. McGhee, J.D. and Felsenfeld, G. (1980) Nucleosome StructureAnn. Rev. Biochem. 401115–1156.

    Article  Google Scholar 

  23. Bradbury, E.M. and Matthews, H.R. (1982) Chromatin Structure, Histone Modifications in the Cell Cycle, in “Cell Growth” (Nicolini, C. ed.) Plenum Press, NY, pp. 411–454.

    Chapter  Google Scholar 

  24. Korberg, R.D. and Klug, A. (1981) The NucleosomeSci. American 244, 48–60.

    Google Scholar 

  25. Simpson, R.T. (1978) Structure of the Chromosome, a Chromatin Particle Containing 160 base pairs of DNA and all the HistonesBiochemistry 17, 5524–5531.

    Article  PubMed  CAS  Google Scholar 

  26. Bradbury, E.M., Baldwin, J.P., Carpenter, B.G., Hjelm, R.P., Hancock, R., and Ibel, K. (1975) Neutron-Scattering Studies of ChromatinBrookhaven Symp. Biol. 27 IV (Schoenborn, B.P., ed.) pp. 97–116.

    Google Scholar 

  27. Pardon, J.F., Worcester, D.C., Wooley, J.C., Tatchell, K., van Holde, K.E., and Richards, B.M. (1975) Low-Angle Neutron Scattering from Chromatin Subunit ParticlesNucl. Acids Res. 22163–2176.

    Article  PubMed  CAS  Google Scholar 

  28. Suau, P., Kneale, G.G., Braddock, G.W., Baldwin, J.P., and Bradbury, E.M. (1977) A Low Resolution Model for the Chromatin Core Particle by Neutron ScatteringNucleic Acids Research 4, 3769–3786.

    Article  PubMed  CAS  Google Scholar 

  29. Hjelm, R.P., Kneale, G.G., Suau, P., Baldwin, J.P., and Bradbury, E.M. (1977) Small Angle Neutron Scattering Studies of Chrotatin Subunits in SolutionCell 10, 139–151.

    Article  PubMed  CAS  Google Scholar 

  30. Richards, B.M., Pardon, J., Lilley, D.M.J., Cotter, P., and Wooley, J. (1977) Sub-Structure of NucleosomesCell Biol. Int. Rep. 1107–116.

    Article  PubMed  CAS  Google Scholar 

  31. Braddock, G.W., Baldwin, J.P., and Bradbury, E.M. (1981) Neutron Scattering Studies of the Structure of the Chromatin Core ParticleBiopolymers 20, 327–343.

    Article  PubMed  CAS  Google Scholar 

  32. Finch, J.T., Lutter, L.C., Rhodes, D., Brown, R.S., Rushton, B., Levitt, M., and Klug, A. (1977) Structure of Nucleosome Core Particles of ChromatinNature 269, 29–36.

    Article  PubMed  CAS  Google Scholar 

  33. Finch, J.T., Brown, R.S., Rhodes, D., Richmond, T., Rushton, B., Lutter, L.C., and Klug, A. (1981) X-Ray-Diffraction Study of a New Crystal Form of the Nucleosome Core Showing Higher ResolutionJ. Mol. Biol. 145757–769.

    Article  PubMed  CAS  Google Scholar 

  34. Bentley, C.A., Finch, J.T., and Lewit-Bentley, A. (1981) Neutron Diffraction Studies on Crystals of Nucleosome Cores Using Contrast VariationJ. Mol. Biol. 145771–784.

    Article  PubMed  CAS  Google Scholar 

  35. Richmond, T.J., Klug, A., Finch, J.T., and Lutter, L.C. (1981) In:Proc. 2nd SUNY Conversation in Biomolecular Stereodynamics(Sarma, R.H. ed.) Vol. II., Adenine Press, NY, pp. 109–123.

    Google Scholar 

  36. Richmond, T.J., Finch, J.T., Rushton, B., Rhodes, D., and Klug, A. (1984) Structure of the Nucleosome Core Particle at 7A ResolutionNature 311, 532–537.

    Article  PubMed  CAS  Google Scholar 

  37. Wood, M.J., Yau, P.M., Imai, B.S., Goldberg, M.W., Lambert, S.J., Fowler, A.L., Baldwin, J.P., Godfrey, J., Moudrianakis, E.N., Ibel, K., May, R.P., Koch, M., and Bradbury (1991) Neutron and X-Ray Scatter Studies of the Histone Octamer and Amino and Carboxyl Domain Trimmed OctamersJ. BioL Cheat. 2665696–5702.

    CAS  Google Scholar 

  38. Schroth, G.P., Yau, P.M., Imai, B.S., Gatewood, J.M., and Bradbury, E.M. (1990) A NMR Study of Mobility in the Histone OctamerFEBS Lett. 268117–120.

    Article  PubMed  CAS  Google Scholar 

  39. Imai, B.S., Yau, P.M., Baldwin, J.P., Ibel, K., May, R.P., and Bradbury, E.M. (1986) Hyperacetylation of Core Histones Does not Cause Unfolding of Nucleosomes: Neutron Scatter Data Accords with Disc Structure of the NucleosomeJ. Biol. Chem. 2618784–8792.

    PubMed  CAS  Google Scholar 

  40. Usachenko, S.I., Barykin, S.G., Gavin, I.M., and Bradbury, E.M. (1994) Rearrangement of the Histone H2A C-Terminal Domain in the NucleosomeProc. Natl. Acad. Sci. USA 916845–6849.

    Article  PubMed  CAS  Google Scholar 

  41. Thoma, F., Koller, T.H., and Klug, A. (1979) Involvement of Histone H1 in the Organization of the Nucleosome and of the Salt-Dependent Superstructures of ChromatinJ. Cell Biol. 83403–427.

    Article  PubMed  CAS  Google Scholar 

  42. Crane-Robinson, C., Bohm, L., Puigdomenech, P., Cary, P.D., Hartman, P.G., and Bradbury, E.M. (1980) Structural Domains in HistonesFEBS DANA-Recombination Interactions and RepairPergamon Press, Oxford and New York.

    Google Scholar 

  43. Allan, J., Hartman, P.G., Crane-Robinson, C., and Aviles, F.X. (1980) The Structure of Histone H1 and its Location in ChromatinNature 288, 675–679.

    Article  PubMed  CAS  Google Scholar 

  44. Suau, P., Bradbury, E.M., and Baldwin, J.P. (1979) Higher-Order Structures of Chromatin in SolutionEur. J. Biochem. 97593–602.

    Article  PubMed  CAS  Google Scholar 

  45. Carpenter, B.G., Baldwin, J.P., Bradbury, E.M., and Ibel, K. (1976) Organization of Subunits in ChromatinNucl. Acids Res. 31739–1746.

    Article  PubMed  CAS  Google Scholar 

  46. Finch, J.T. and Klug, A. (1976) Solenoidal Model for Superstructure in ChromatinProc. Natl. Acad. Sci. USA 73, 1897.

    Article  PubMed  CAS  Google Scholar 

  47. Widom, J. and Klug, A. (1985) Structure of the 300A Chromatin Filament: X-Ray Diffraction from Oriented SamplesCell 43, 207–213.

    Article  PubMed  CAS  Google Scholar 

  48. Worcel, A., Strongatz, S., and Riley, D. (1981) Structure of the 300A Chromatin Filament: X-RayDiffraction from Oriented SamplesProc. Natl. Acad. Sci. USA 78, 1461–1465.

    Article  PubMed  CAS  Google Scholar 

  49. Woodcock, C.L.F., Frado, L.L.Y., and Rattner, J.B. (1984) The Higher-Order Structure of Chromatin: Evidence for a Helical Ribbon ArrangementJ. Cell Biol. 9942–52.

    Article  PubMed  CAS  Google Scholar 

  50. Bednar, J. Horowitz, R.A., Dubochet, J., and Woodcock, C.L. (1995) Compaction: 3-Dimensional Structural Information from Cryoelectron MicroscopyJ. Cell Biol. 1311365–1376.

    Article  PubMed  CAS  Google Scholar 

  51. Williams, S.P., Athey, B.D., Muglia, L.J., Scheppe, R.S., Gough, A.H., and Langmore, J.P. (1986) Chromatin Fibers are Left-Handed Double Helices with Diameter and Mass per Unit Length that Depend on Linker LengthBiophys. J. 49233–248.

    Article  PubMed  CAS  Google Scholar 

  52. Staynov, D.Z. (1983) Possible nucleosome arrangements in the higher-order structure of chromatin.Int. J. Biol. Macromol.53–9.

    Article  CAS  Google Scholar 

  53. Graziano, V., Gerchman, V., Schneider, D.K., and Ramakrishnan, V. (1994) Histone Hl is Located in the Interior of the Chromatin 30-nm FilamentNature 368, 351–354.

    Article  PubMed  CAS  Google Scholar 

  54. Yang, G., Leuba, S.H., Bustamante, C., Zlatanova, J., and van Holde, K. (1994) Linker DNA Accessibility in Chromatin Fibers of Different Conformations: A Re-EvaluationSPIE Proc. 238413–21.

    Article  Google Scholar 

  55. Leuba, S.H., Yang, G., Robert, C., Samori, B., van Holde, K., Zlatanova, J., and Bustamante, C. (1994) Three-Dimensional Structure of Extended Chromatin Fibers as Revealed by Tapping-Mode Scanning Force MicroscopyProc. Nall. Acad Sci. 9111621–11625.

    Article  CAS  Google Scholar 

  56. Zlatanova, J., Leuba, S.H., Yang, G., Bustamante, C., and van Holde, K. (1994) Linker DNA Accessibility in Chromatin Fibers of Different Conformations: A re-EvaluationProc. Natl. Acad. Sci. 915277–5280.

    Article  PubMed  CAS  Google Scholar 

  57. Leuba, S.H., Zlatanova, J., and van Holde, K. (1994) On the Location of Linker DNA in the Chromatin Fiber. Studies with Immobilized and Soluble Micrococcal NucleaseJ. Mol. Biol. 235871–880.

    Article  PubMed  CAS  Google Scholar 

  58. Allen, M.J. (1995) Ph.D. Dissertation “Application of Atomic Force Microscopy to In Vitro and In Situ Investigations of Somatic and Sperm Chromaton Structure”, University of California-Davis.

    Google Scholar 

  59. Foe, V.E. (1977) Modulation of Ribosomal RNA Synthesis in Oncopeltus Fasciatus: An Electron Microscopic Study of the Relationship Between Changes in Chromatin Structure and Transcriptional ActivityCold Spring Harbor Symp. Quant. Biol. 42723–740.

    Article  Google Scholar 

  60. Andersson, K., Mahr, R., Bjorkroth, B., and Daneholt, B. (1982) Rapid Reformation of the Thick Chromosome Fiber Upon Completion of RNA Synthesis at the Balbiani Ring Genes in Chironomus TentansChromosoma 87, 33–84.

    Article  PubMed  CAS  Google Scholar 

  61. Daneholt, B. (1982) In: Insect Ultrastructure 1 (King and Akai, eds.) Plenum Publishing Corporation, pp. 382–401.

    Google Scholar 

  62. Olins, A.L., Olins, D.E., and Lezzi, M. (1982) Ultrastructural studies of Chironomus salivary-gland cells in different states of Balbiani ring activity.Eur. J. Cell Biol..27161–169.

    PubMed  CAS  Google Scholar 

  63. Olins, D.E., Olins, A.L., Levy, H.A., Durfee, R.C., Margie, S.M., Timnel, E.P., and Dover, S.D. (1983) Electron-Microscope Tomography: Transcription in 3-DimensionsScience 220, 498–500.

    Article  PubMed  CAS  Google Scholar 

  64. Levy-Wilson, B. and Dixon, G.H. (1979) Limited Action of Micrococcal Nuclease on Trout Testis Nucleo Generates Two Mononucleosome Subsets Enriched in Transcribed DNA SequencesProc. Natl. Acad. Sci. USA 76, 1682–1686.

    Article  PubMed  CAS  Google Scholar 

  65. Yasuda, H., Mueller, R.D., Logan, K.A., and Bradbury, E.M. (1986) Histone H1 in Physarum polycephalum; Its High Level in the Plasmodial State Increases in Amount and Phosphorylation in the Sclerotial StageJ. Biol. Chem. 2612349–2354.

    PubMed  CAS  Google Scholar 

  66. Baer, B.W. and Rhodes, D. (1983) Eukaryotic RNA Polymerase-II Binds to Nucleosome Cores from Transcribed GenesNature 301, 482–488.

    Article  PubMed  CAS  Google Scholar 

  67. Weisbrod, S. and Weintraub, H. (1981) Isolation of Actively Transcribed Nucleosomes Using Immobilized HMG 14 and 17 and an Analysis of Alpha-Globin ChromatinCell 23, 391–400.

    Article  PubMed  CAS  Google Scholar 

  68. O’Neill, T.E., Smith, J.G., and Bradbury, E.M. (1993) Histone Octamer Dissociation is not Required for Transcript Elongation Through Arrays of Nucleosome Cores by Phage T7 RNA Polymerase in vitroProc. Natl. Aced Sci. USA 90, 6203–6207.

    Article  Google Scholar 

  69. Norton, V.G., Imai, B.S., Yau, P.M., and Bradbury, E.M. (1989) Histone Acetylation Reduces Nucleosome Core Particle Linking Number ChangeCell 57, 449–457.

    Article  PubMed  CAS  Google Scholar 

  70. Norton, V.G., Marvin, K.W., Yau, P.M., and Bradbury, E.M. (1990) Nucleosome Linking Number Change Controlled by Acetylation of Histones H3 and H4J. Biol. Chem. 26519,848–19,852.

    PubMed  CAS  Google Scholar 

  71. Cao, Y., Yau, P., and Bradbury, E.M., manuscript in preparation.

    Google Scholar 

  72. West, M.H.P. and Bonner, W.M. (1980) Histone 2B can be Modified by the Attachment of UbiquitinNucl. Acids Res. 84671.

    Article  PubMed  CAS  Google Scholar 

  73. Simpson, R.T. (1986) Nucleosome Positioning in vivo and in vitroBioessays 4, 172–176.

    Article  PubMed  CAS  Google Scholar 

  74. Trifonov, E.N. (1980) Helical Model of Nucleosome CoreNucl. Acids Res. 84041–4053.

    Article  PubMed  CAS  Google Scholar 

  75. Drew, H.R. and Travers, A.A. (1985) DNA Bending and its Relation to Nucleosome PositioningJ. Mol. Biol. 186773–790.

    Article  PubMed  CAS  Google Scholar 

  76. Satchwell, S.C., Drew, H.R. and Travers, A.A. (1986) Sequence Periodicities in Chicken Nucleosome Core DNAJ. MoL Biol. 191659–675.

    Article  PubMed  CAS  Google Scholar 

  77. Rhodes, D. (1979) Nucleosome Cores Reconstituted from poly(dA-dT) and the Octamer of HistonesNucl. Acids Res. 61805–1816.

    Article  PubMed  CAS  Google Scholar 

  78. Prunell, A. (1982) Nucleosome reconstitution on Plasmid-Inserted Poly(dA)•poly(dT)EMBO J. 1173–179.

    PubMed  CAS  Google Scholar 

  79. Neubauer, B., Linxweiler, W., and Horz, W. (1986) DNA Engineering shows that Nucleosome Phasing on the African-Green Monkey Alpha-Satellite is the Result of Multiple Additive HistonJ. Mol. Biol. 190639–645.

    Article  PubMed  CAS  Google Scholar 

  80. Thoma, F. and Zatchei, M. (1988) Chromatin Folding Modulates Nucleosome Positioning in Yeast MinichromosomesCell 55, 945–953.

    Article  PubMed  CAS  Google Scholar 

  81. Stein, A. and Mitchell, M. (1988) Generation of Different Nucleosome Spacing Periodicities in vitro: Possible Origin of Cell Type SpecifficityJ. Mol. BioL 203, 1029–1043.

    Article  PubMed  CAS  Google Scholar 

  82. Simpson, R.T. and Stafford, D.W. (1983) Structural Features of a Phased Nucleosome Core ParticleProc. Nall. Acad. Sci., USA 50, 51–55.

    Article  Google Scholar 

  83. Simpson, R.T., Thoma, F., and Brubaker, J.M. (1985) Chromatin Reconstituted from Tandemly Repeated Cloned DNA Fragments and Core Histones: A Model System for Study of Higher-Order StCell 42, 799–808.

    Article  PubMed  CAS  Google Scholar 

  84. Meersseman, G., Pennings, S., and Bradbury, E.M. (1991) Chromatosome Positioning on Assembled Long Chromatin: Linker Histones Affect Nucleosome Placement on 5S rDNAJ. Mol. Biol. 22089–100.

    Article  PubMed  CAS  Google Scholar 

  85. Pennings, S., Meersseman, G., and Bradbury, E.M. (1991) Mobility of Positioned Nucleosomes on 5S rDNAJ. Mol. Biol. 220101–110.

    Article  PubMed  CAS  Google Scholar 

  86. Meersseman, G., Pennings, S., and Bradbury, E.M. (1992) Mobile Nucleosomes - A General BehaviorEMBO J. 112951–2959.

    PubMed  CAS  Google Scholar 

  87. Shrader, T.E. and Crothers, D.M. (1989) Artificial Nucleosome Positioning SequencesProc. Natl. Acad. Sci., USA 867418–7422.

    Article  PubMed  CAS  Google Scholar 

  88. Lowman, H. and Bina, M. (1990) Correlation Between Dinucleotide Periodicities and Nucleosome Positioning on Mouse Satellite DNABiopolymers 30861–876.

    Article  PubMed  CAS  Google Scholar 

  89. Simpson, K.T. (1991) Nucleosome Positioning: Occurrence, Mechanisms, and Functional ConsequencesProg. NucL Acids Res. Mol. Biol. 40143–184.

    Article  CAS  Google Scholar 

  90. Wolffe, A.P. (1989) Dominant and Specific Repression of Xenopus Oocyte 5S RNA Genes and Satellite I DNA by Histone HIEMBO J. 8527–537.

    PubMed  CAS  Google Scholar 

  91. Laybourn, P.J. and Kadonaga, J.T. (1991) Role of Nucleosomal Cores and Histone H1 in the Regulation of Transcription by RNA Polymerase IIScience 254238–245.

    Article  PubMed  CAS  Google Scholar 

  92. Pennings, S., Meersseman, G., and Bradbury, E.M. (1994) Linker Histones H1 and H5 Prevent the Mobility of Positioned NucleosomesProc. Natl. Acad. Sci. USA 9110275–10279.

    Article  PubMed  CAS  Google Scholar 

  93. Ura, K., Hayes, J.J., and Wolffe, A.P. (1995) A Positive Role for Nucleosome Mobility in the Transcriptional Activity of Chromatin Templates: Restriction by Linker HistonesEMBO J. 143725–3765.

    Google Scholar 

  94. Tsukiyama, T., Becker, P.B., and Wu, C. (1994) ATP-Dependent Nucleosome Disruption at a Heat-Shock Promoter Mediated by Binding of GAGA Transcription FactorNature 367525–532.

    Article  PubMed  CAS  Google Scholar 

  95. Wall, G., Varga-Weisz, zp.D., Sandaltzopoulos, R., and Becker, P.B. (1995) Chromatin Remodeling by GAGA Factor and Heat Shock Factor at the Hypersensitive Drosophila hsp26 Promoter in vitroEMBO J. 141727–1736.

    PubMed  CAS  Google Scholar 

  96. Pazin, M.J., Kamakaka, R.T., and Kadonaga, J.T. (1994) ATP-Dependent Nucleosome Reconfiguration and Transcriptional Activation from Preassembled Chromatin TemplatesScience 266,2007–2011.

    Article  PubMed  CAS  Google Scholar 

  97. Tsukiyama, T. and Wu, C. (1995) Purification and Properties of an ATP-Dependent Nucleosome Remodeling FactorCell 831011–1020.

    Article  PubMed  CAS  Google Scholar 

  98. Peterson, C.L. and Tamkun, J.W. (1995) The SWI-SNF Complex: A Chromatin Remodeling MachineTrends. Biochem. Sci. 20143–146.

    Article  PubMed  CAS  Google Scholar 

  99. Lorch, Y., LaPointe, J.W., and Kornberg, R.D. (1987) Nucleosomes Inhibit the Initiation of Transcription but Allow Chain Elongation with the Displacement of HistonesCell 49203–210.

    Article  PubMed  CAS  Google Scholar 

  100. Losa, R. and Brown, D.D. (1987) A Bacteriophage RNA Polymerase Transcribes invitroThrough a Nucleosome Core Without Displacing it,Cell,50, 801–808.

    Article  PubMed  CAS  Google Scholar 

  101. Morse, R.H. (1989) Nucleosomes Inhibit Both Transcriptional Initiation and Elongation by RNA Polymerase III in vitroEMBO J. 82343–2351.

    PubMed  CAS  Google Scholar 

  102. Felts, S.J., Weil, P.A., and Chalkley, R. (1990) Transcription Factor Requirements for in vitro Formation of Transcriptionally Competent 5S rDNA Gene Chromatin, Mol. Cell. Biol.102390–2401.

    CAS  Google Scholar 

  103. O’Neill, T.E., Roberge, M., and Bradbury, E.M. (1992) Nucleosome Arrays Inhibit both Initiation and Elongation of Transcripts by T7 RNA PolymeraseJ. Mol. Biol. 22367–78.

    Article  PubMed  Google Scholar 

  104. O’Neill, T.E., Pennings, S., Meersseman, G., and Bradbury, E.M. (1995) Deposition of Histone Hl Onto Reconstituted Nucleosome Arrays Inhibits Both Initiation and Elongation of Transcripts by T7 RNA PolymeraseNucleic Acids Res. 231075–1082.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pennings, S., Bradbury, E.M. (1997). Nucleosome and Chromatin Structures and Functions. In: Nicolini, C. (eds) Genome Structure and Function. NATO ASI Series, vol 31. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5550-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5550-2_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6338-8

  • Online ISBN: 978-94-011-5550-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics