Skip to main content

Ethylene: Interorgan Signaling and Modeling of Binding Site Structure

  • Chapter
Biology and Biotechnology of the Plant Hormone Ethylene

Part of the book series: NATO ASI Series ((ASHT,volume 34))

Abstract

Ethylene is involved in many developmental processes including the senescence of petals in ethylene sensitive flower species such as carnation, orchids and Petunia. The mode of action of ethylene in petal senescence may be its effect on the expression of numourous genes, among them genes coding for enzymes directly involved in cell death and genes encoding ethylene biosynthetic enzymes or components of the ethylene perception and signal transduction route(s). In carnation, a range of different senescence-related (SR) genes were isolated by Woodson and co-workers. Expression of most of these genes increased during the rise in ethylene production while treatment with the ethylene inhibitor 2,5-norbornadiene generally was inhibitory, indicating that expression is controlled by ethylene [1]. Based on homology studies with other known proteins, putative roles of some of the proteins in petal senescence is expected. Among the carnation SR genes, besides from the ethylene biosynthetic genes ACC synthase and ACC oxidase, the following activities have been reported: beta-glucosidase, beta-galactosidase, glutathione-S-transferase, carboxyphosphonoenolpyruvate mutase and thiol protease [1 and references therein]. Although some of these enzymes may be directly or indirectly involved in the processes leading to petal senescence, definite proof of their function e.g in transgenic plants, is lacking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 9.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Woodson, W.R., Brandt, A.S., Itzhaki H., Maxon, J.M., Wang H., Park, K.Y., and Larsen, P.B. (1993) Ethylene regulation and function of flower senescence-related genes, In: J.C. Pech et al. (eds), Cellular and molecular aspects of the plant hormone ethylene, Kluwer Academic Publishers, The Netherlands, pp. 291–297.

    Google Scholar 

  2. Bradford, K.J. and Yang, S.F. (1980) Xylem transport of 1-aminocyclopropane-1-carboxylic acid, an ethylene precursor, in waterlogged tomato plants, Plant Physiol. 65, 322–326.

    Article  PubMed  CAS  Google Scholar 

  3. Seliskar, D.M. (1988) Waterlogging stress and ethylene production in the dune slack plant, Scirpus americanis, J. Exp. Bot. 39, 1639–1648.

    Article  CAS  Google Scholar 

  4. Voesenek, L.A.C.J., Harren. F.J.M., Bögemann, G.M., Blom, C.W.P.M., and Reuss, J. (1990) Ethylene production and petiole growth in Rumex plants induced by soil waterlogging, Plant Physiol. 94, 1071–1077.

    Article  PubMed  CAS  Google Scholar 

  5. Glazer J., Apelbaum A., and Orion, D. (1984). Reversal of nematode-induced growth retardation in tomato plants by inhibition of ethylene action, J. Amer. Soc. Hort. Sci. 109, 886–889.

    CAS  Google Scholar 

  6. Tudela, D. and Primo-Millo, E. (1992) 1-Aminocyclopropane-1-carboxylic acid transported from roots to shoots promotes leaf abscission in Cleopatra mandarin (Citrus reshni Hort. ex Tan) seedlings rehydrated after water stress, Plant Physiol. 100, 131–137.

    Article  PubMed  CAS  Google Scholar 

  7. Finlayson, S.A., Foster, K.R., and Reid, D.M. (1991) Transport and metabolism of 1-aminocyclopropane-1-carboxylic acid in sunflower (Helianthus annuus L.) seedlings, Plant Physiol. 96, 1360–1367.

    Article  PubMed  CAS  Google Scholar 

  8. Amrhein N., Breuing F., Eberle J., Skorupka H., and Tophof, S. (1982) The metabolism of 1-aminocyclopropane-1-carboxylic acid, In: P.F. Waering (ed), Plant Growth Substances, Academic Press, London/New York, pp. 249–258.

    Google Scholar 

  9. Morris, D.A. and Larcombe, N.J. (1995) Phloem transport and conjugation of foliar-applied 1-aminocyclopropane-1-carboxylic acid in cotton (Gossypium hirsutum L.), J. Plant Physiol. 146, 429–436.

    Article  CAS  Google Scholar 

  10. Nichols R., Bufler G., Mor Y., Fujino, D.W., and Reid, M.S. (1983) Changes in ethylene production and 1-aminocyclopropane-1-carboxylic acid content of pollinated carnation flowers, J. Plant Growth Regul. 2, 1–8.

    Article  CAS  Google Scholar 

  11. Nichols, R. and Frost, C.E. (1985) Wound-induced production of 1-aminocyclopropane-1-carboxylic acid and accelerated senescence of Petunia corollas, Sci. Hortic. 26, 47–55.

    Article  CAS  Google Scholar 

  12. Reid, M.S., Fujino, D.W., Hoffman, N.E., and Whitehead, C.S. (1984) 1-aminocyclopropane-1-carboxylic acid (ACC)-The transmitted stimulus in pollinated flowers, J. Plant Growth Regul. 3, 189–196.

    Article  CAS  Google Scholar 

  13. Woltering, E.J. (1990) Interorgan translocation of 1-aminocyclopropane-1-carboxylic acid and ethylene coordinates senescence in emasculated Cymbidium flowers, Plant Physiol 91, 837–845.

    Article  Google Scholar 

  14. Jackson, M.B. and Campbell, D.J. (1975) Movement of ethylene from roots to shoots, a factor in the responses of tomato plants to waterlogged soil conditions, New Phytol 74, 397–406.

    Article  CAS  Google Scholar 

  15. Zeroni M., Jerry, P.H., and Hall, M.A. (1977) Studies on the movement and distribution of ethylene in Vicia Faba L., Planta 134, 119–125.

    Article  CAS  Google Scholar 

  16. Woltering, E.J. (1991) Regulation of ethylene biosynthesis in gravistimulated Kniphofia flower stalks, J. Plant Physiol. 138, 443–449.

    Article  CAS  Google Scholar 

  17. Philosoph-Hadas S., Meir S., Rosenberger I., and Halevy, A.H. (1996) Regulation of the gravitropic response and ethylene biosynthesis in gravistimulated snapdragon spikes by calcium chelators and ethylene inhibitors, Plant Physiol. 110, 301–310.

    PubMed  CAS  Google Scholar 

  18. Sisler, E.C. (1991) Ethylene binding components in plants, In: A.K. Mattoo and J.C. Suttle (eds), The plant hormone ethylene, CRC press, Boston/London, pp. 81–99.

    Google Scholar 

  19. Bleecker, A.B., Estelle, M.A., Somerville C., and Kende, H. (1988) Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana, Science 241, 1086–1089.

    Article  PubMed  CAS  Google Scholar 

  20. Chang C., Kwok, S.F., Bleecker, A.B., and Meyerowitz, E.M. (1993) Arabidopsis ethylene-response gene ETR1: Similarity of product to two-component regulators, Science 262, 539–599.

    Article  PubMed  CAS  Google Scholar 

  21. Hua J., Chang C., Sun Q., and Meyerowitz, E.M. (1995) Ethylene insensitivity conferred by Arabidopsis ERS gene, Science 269, 1712–1714.

    Article  PubMed  CAS  Google Scholar 

  22. Kieber, J.J., Rothenberg M., Roman G., Feldmann, K.A., and Ecker, J.R. (1993) CTR1, a negative regulator of the ethylene response pathway in Arabidopsis encodes a member of the Raf family of protein kinases, Cell 72, 427–441.

    Article  PubMed  CAS  Google Scholar 

  23. Schaller, G.E., Ladd, A.N., Lanahan, M.B., Spanbauer, J.M., and Bleecker, A.B. (1995) The ethylene response mediator ETR1 from Arabidopsis forms a disulfide-linked dimer, Journal of Biol. Chem. 270, 12526–12530.

    Article  CAS  Google Scholar 

  24. King, R.W. and Zeevaart, J.A.D. (1974) Enhancement of phloem exudation from cut petioles by chelating agents, Plant Physiol 53, 96–103.

    Article  PubMed  CAS  Google Scholar 

  25. Woltering, E.J., Somhorst D., and Van der Veer, P. (1995) The role of ethylene in interorgan signaling during flower senescence, Plant Physiol. 109, 1219–1225.

    PubMed  CAS  Google Scholar 

  26. Woltering, E.J. (1990) Interrelationship between the different flower parts during emasculation-induced senescence in Cymbidium flowers, J. Exp. Bot. 41, 1021–1029.

    Article  CAS  Google Scholar 

  27. Rost B., Casidio R., Fariselli P., and Sander, C. (1995) Prediction of helical transmembrane segments at 95% accuracy, Prot. Science 4, 521–533.

    Article  CAS  Google Scholar 

  28. O’Neill, S.D., Nadeau, J.A., Zhang, X.S., Bui, A.Q., and Halevy, A.H. (1993) Interorgan regulation of ethylene biosynthetic genes by pollination, Plant Cell 5, 419–432.

    PubMed  Google Scholar 

  29. Schaller, G.E. and Bleecker, A.B. (1995) Ethylene-binding sites generated in yeast expressing the Arabidopsis ETR1 gene, Science 270, 1809–1811.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Woltering, E.J., Van der Bent, A., De Vrije, G.J., Van Amerongen, A. (1997). Ethylene: Interorgan Signaling and Modeling of Binding Site Structure. In: Kanellis, A.K., Chang, C., Kende, H., Grierson, D. (eds) Biology and Biotechnology of the Plant Hormone Ethylene. NATO ASI Series, vol 34. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5546-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5546-5_22

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6336-4

  • Online ISBN: 978-94-011-5546-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics