Skip to main content

Superconducting Mixers for Submillimetre Wavelengths

  • Chapter
Microwave Physics and Techniques

Part of the book series: NATO ASI Series ((ASHT,volume 33))

  • 384 Accesses

Abstract

For radio astronomy and remote sensing applications at frequencies of the order THz there is a strong need for receivers with much higher sensitivity than is available at present. Today, most receivers for frequencies near and above 1 THz have to rely on Schottky-diode mixers, with rather poor sensitivity [1,2]. Low noise SIS mixers based on superconductors have excellent performance and have replaced Schottky-diode mixers for frequencies up to about 650 GHz, corresponding to the energy gap of niobium [1,2,4,5]. Since niobium tri-layer technology is by far the most successful SIS- mixer technology and since the RF loss will be significant above the energy gap of niobium [6], it may be very difficult to realise SIS mixers with a noise temperature limited to a few times the quantum limit (Tmixer≈hf/k) above about 700 GHz.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Blundell, C.E. Tong (1992), Submillimeter Receivers for Radio Astronomy, Proceedings oftheIEEE,80, 1702–1720.

    Article  Google Scholar 

  2. Zimmermann R&R&P (1992) All solid state radiometers for environmental studies to 700 GHz, Proceedings of the Third International Symposium on Space Terahertz Technology, 706–723.

    Google Scholar 

  3. J. Mees, S. Crewell, H. Nett, G. de Lange, H. van de Stadt, J. J. Kuipers, R. A. Panhuyzen (1994) An Airborne SIS-Receiver for Atmospheric Measurements at 630 and 720 GHz, Proceedings of the Fifth International Symposium on Space Terahertz Technology, 142–155.

    Google Scholar 

  4. J. Zmuidzinas, H. D. LeDuc, J. A. Stern, and S. R. Cypher, (1994) “Two-Junction Tuning Circuit for Submillimeter SIS Mixers,” IEEE Trans, on Microwave Theory and Techniques, MTT-42, 698–706.

    Article  Google Scholar 

  5. V. Yu. Belitsky, S. W. Jacobsson, L. V. Filippenko, E. L. Kollberg (1995) Broadband Twin-Junction Tuning Circuit for Submillimeter SIS Mixers, Microwave and Optical Technology Letters, 10, 74–78.

    Article  Google Scholar 

  6. G. de Lange, C. E. Honing, J. J. Kupiers, H. H. A. Schaeffer, R. A. Panhuyzen, T. M. Klapwijk, H. van de Stadt, M. de Graauw (1994) Heterodyne mixing with Nb tunnel junctions above the gap frequency, Appl. Phys. Lett 64, 3039–3041.

    Article  Google Scholar 

  7. E.M. Gershenzon, G.N. Gol’tsman, I.G. Gogidze, A.I. Elant’ev, B.S. Karasik, A.D. Semenov (1990) Millimeter and Submillimeter Range Mixer Based on Electronic Heating of Superconducting Films in the Resistive State, Sov.Phys.Superconductivity, 3,1582–1597.

    Google Scholar 

  8. G.N. Gol’tsman, A.D. Semenov, Y.P. Gousev, M.A. Zorin, I.G. Gogidze, E.M. Gershenzon, P.T. Lang, W.J. Knott, K.F. Renk (1991) Sensitive Picosecond NbN Detector for Radiation from Millimeter Wavelengths to Visible Light, Supercond. Science and Technology, 4,453.

    Article  Google Scholar 

  9. H. Ekström, B. Karasik’ E. Kollberg, and K.S. Yngvesson (1995) Conversion Gain and Noise of Niobium Superconducting Hot-Eelectron-Mixers, IEEE Transactions on Microwave Theory and Techniques, 43, 938–947.

    Article  Google Scholar 

  10. D.E. Prober (1993) Superconducting Terahertz mixer using a transition-edge micro-bolometer, Appl. Phys. Lett. 62, 2119–2121.

    Article  Google Scholar 

  11. A. Skalare, W.R. McGrath, B. Bumble, H.G. LeDuc, P.J. Burke, A.A. Verheijen, and D.E. Prober (1995) A heterodyne receiver at 533 GHz using a diffusion cooled superconducting hot electron mixer, “IEEE Trans. on Applied Superconductivity, 5, March 1995.

    Google Scholar 

  12. S. A. Maas (1988) Nonlinear Microwve Circuits, Artech House Inc., Norwood, Massachusetts.

    Google Scholar 

  13. J. R. Tucker, M. J. Feldman (1985) Quantum Detection at Millimeter Wavelengths, Review of Modern Physics, 57,1055–1113.

    Article  Google Scholar 

  14. V. Yu. Belitsky, E. L. Kollberg (1996) Superconductor-Insulator-Superconductor Tunnel Strip Line: Features and Applications, to be published in Applied Physics journal.

    Google Scholar 

  15. W. J. Skocpol, M. R. Beasly, and M. Tinkham (1974) Phase-Slip Centers and Nonequilibrium Processes in Superconducting Tin Microbridges, J. Low Temp. Phys., 16, 145–167.

    Article  Google Scholar 

  16. A. V. Gurevich and R. G. Mints (1987) Self-heating in normal metals and superconductors, Reviews of Modern Physics, 59, 841–999.

    Article  Google Scholar 

  17. R. P. Huebener (1979) Magnetic flux Structures in Superconductors. Berlin: Springer.

    Google Scholar 

  18. E.M. Gershenzon, M.E. Gershenzon, G.N. Gol’tsman, A.M. Lyul’kin, A.D. Semenov, A. V. Sergeev (1990) Electron-phonon interaction in ultrathin Nb films”, Sov. Phys. JETP, 70, 505–508.

    Google Scholar 

  19. H. Ekström, B. Karasik, E. Kollberg, G. Gol’tsman, and E. Gershenzon (1995) 350 GHz NbN hot electron bolometer mixer, 6th Int. Symp. on Space Terahertz Technology, Pasadena, 269–283.

    Google Scholar 

  20. P. Yagoubov, G. Gol’tsman, B. Voronov, and E. Gershenzon (1996) The bandwidth of HEB Mixers Employing Ultrathin NbN Films on Sapphire Substrate, presented at 7th Int. Symp. on Space Terahertz Technology, Charlottesville, VA.

    Google Scholar 

  21. A. F. Andreev (1964), Sov. Phys JEPT, 19,1228.

    Google Scholar 

  22. F. Arams, C. Allen, B. Peyton, E. Sard (1966) Millimeter Mixing and Detection in Bulk InSb”, Proc. IEEE, 54, 308–318.

    Article  Google Scholar 

  23. B. S. Karasik, A. I. Elantev, (1995) Analysis of the Noise Performance of a Hot-Electron Superconducting Bolometer Mixer, Sixth International Symposium on Space Terahertz Technology, 229–246.

    Google Scholar 

  24. J. C. Mather (1982) Bolometer Noise: nonequilibrium Theory, Appl. Optics, 21, 1125–1129.

    Article  MathSciNet  Google Scholar 

  25. S. I. Park, T. H. Geballe (1986) Superconducting Tunnelling in Ultrathin Nb Films, Phys. Rev. Lett. 57, 901–904.

    Article  Google Scholar 

  26. J. W. P. Hsu, A. Kapitulnik (1992) Superconducting transition, fluctuation, and vortex motion in a two-dimensional single-crystal Nb film, Phys. Rev. B, 45,4819–4835.

    Article  Google Scholar 

  27. H. A. Huggins and M. Gurvitch (1985) Preparation and characteristics of Nb/Al-oxide/Nb tunnel junctions, J. Appl. Phys., 57, 2103–2109.

    Article  Google Scholar 

  28. E. Gerecht, C. F. Musante, Z. Wang, K. S. Yngvesson, E. R. Mueller, J. Waldman, G. N. Gol’tsman, B. M. Voronov, S. I. Cherednichenko, S. I. Svechnikov, P. A. Yagoubov, and E. M. Gershenzon, (1996) Optimization of Hot-Electron Bolometer Mixing Efficiency in NbN at 119 Micrometer Wavelength, presented at 7th Int. Symp. on Space Terahertz Technology, Charlottesville, VA.

    Google Scholar 

  29. J. Kawamura, R. Blundel, C.-Y. E. Tong, G. Gol’tsman, E. Gershenzon, and B. Voronov (1996) Superconductive NbN Hot-Electron Bolometric Mixer Performance at 200-250 GHz, presented at 7th Int. Symp. on Space Terahertz Technology, Charlottesville, VA.

    Google Scholar 

  30. B. S. Karasik, G. N. Gol’tsman, B. M. Voronov, S. I. Svechnikov, E. M. Gershenzon, H. Ekström, S. Jacobsson, E. Kollberg, and S. K. Yngvesson (1995) Hot Electron Quasioptical NbN Superconducting Mixer, IEEE Trans. Appl. Superconductivity, 5, 2232–2235.

    Article  Google Scholar 

  31. P. Yagoubov, G. Gol’tsman, B. Voronov, S. Svechnikov, S. Cherednichenko, E. Gershenzon, V. Belitsky, H. Ekström, E. Kollberg, A. D. Semenov, Y. P. Gousev, and K. F. Renk (996) Quasioptical Phonon-cooled NbN Hot-Electron Bolometer Mixer at THz Frequencies, presented at 7th Int. Symp. on Space Terahertz Technology, Charlottesville, VA.

    Google Scholar 

  32. H. Ekström, B. Karasik (1995 ) Electron Temperature Fluctuation Noise in Hot Electron Superconducting Mixers, Applied Phys. lett., 66, 3212–3214

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kollberg, E.L. (1997). Superconducting Mixers for Submillimetre Wavelengths. In: Groll, H., Nedkov, I. (eds) Microwave Physics and Techniques. NATO ASI Series, vol 33. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5540-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5540-3_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6333-3

  • Online ISBN: 978-94-011-5540-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics