Skip to main content

The Lancaster’s Probabilities on R2 and Their Extreme Points

  • Chapter
  • 701 Accesses

Abstract

Given two probabilities μ and ν on R, the Lancaster’s probabilities on R 2 are the probabilities

$$\sigma (dx, dy)= \mu (dx) K (x, dy) = \nu (dy) L(y, dx)$$

with margins μ and ν such that for all \(n \epsilon N, \int_R y^n(x, dy)\) and \( \int_R y^n L(x, dy)\) are polynomials with degree less or equal to n. This lecture reviews the properties of the convex set of these measures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bar-Lev, S.K., Bshouty, D., Enis, P., Letac, G., Lu, I., and Richards, D. (1994), The diagonal natural exponential families on R n and their classification, J. Theoret. Prob., 7, 883–929.

    Article  MathSciNet  MATH  Google Scholar 

  • Barndorff-Nielsen, O.E. and Koudou, A.E. (1996), Cuts in natural exponential families, Theo. Prob. Appl., 41.

    Google Scholar 

  • Brown, J.L., Jr. (1958), A criteria for the diagonal expansion of a second-order probability density in orthogonal polynomials, IRE Trans. Inform. Theory, vol IT-4, 172.

    Google Scholar 

  • Eagleson, G.K., (1964), Polynomial expansions of bivariate distributions, Ann. Math. Statist. 35, 1208–1215.

    Article  MathSciNet  MATH  Google Scholar 

  • Eagleson, G.K., (1969), A characterization theorem for the positive definite sequences on the Krawtchouk polynomials, Aust. J. Statist. 11, 29–38.

    Article  MathSciNet  MATH  Google Scholar 

  • Feinsilver, P., (1986), Some classes of orthogonal polynomials associated with martingales, Proc. A. M. S., 98, 298–302.

    Article  MathSciNet  MATH  Google Scholar 

  • Koudou, A.E. (1995), Problèmes de marges et familles exponentielles naturelles, Thèse, Université Paul Sabotier, Toulouse.

    Google Scholar 

  • Koudou, A.E. (1997), Probabilités de Lancaster, Expositiones Math., to appear.

    Google Scholar 

  • Laha, R.G., and Lukacs, E. (1960), On a problem connected with quadratic regression, Biometrika, 47, 335–343.

    MathSciNet  MATH  Google Scholar 

  • Lai, C.D., and Vere-Jones, D. (1975), Odd man out. The Meixner hyperbolic distribution, Aust. J. Statist. 21, 256–265.

    MathSciNet  Google Scholar 

  • Lancaster, H.O. (1969), The Chi-squared distribution, Wiley, New York.

    MATH  Google Scholar 

  • Letac, G. (1966), Représentation des probabilités de marges données sur un produit de deux espaces dénombrables, Illinois Math. J., 17, 410–423.

    Google Scholar 

  • Letac, G. (1997), The retrieval of a rotation invariant distribution of (X,Y) from E(X 2|Y), Volume in honor of 75th birthday of C.R.Rao.

    Google Scholar 

  • McGraw, D.K. and Wagner, J.G. (1968), Elliptically symmetric distributions, I.E.E.E. Trans. Inform. Theory, 14, 110–120.

    Article  Google Scholar 

  • Meixner, J. (1934), Orthogonale Polynomsysteme mit einer besonderen Gestalt der erzengenden Function, J. London Math. Soc., 9, 6–13.

    Article  MathSciNet  Google Scholar 

  • Morris, C.N. (1982), Natural exponential families with quadratic variance functions, Ann. Statist., 10, 65–80.

    Article  MathSciNet  MATH  Google Scholar 

  • Pommeret, D. (1995), Polynômes orthogonaux associés aux familles exponentielles naturelles, Thèse, Université Paul Sabotier, Toulouse.

    Google Scholar 

  • Sarmanov, O.V. and Bratoeva, Z.N. (1967), Probabilistic properties of bilinear expansions of Hermite polynomials, Theo. Prob. Appl., 12, 470–481.

    Article  MathSciNet  MATH  Google Scholar 

  • Shanbhag, D.N. (1979), Diagonality of the Bhattacharyya matrix as a characterization, Theo. Prob. Appl., 24.

    Google Scholar 

  • Tyan, S., and Thomas, J.B. (1975), Characterization of a class of bivariate distributions J. Multivariate Anal., 5, 227–235.

    Article  MathSciNet  MATH  Google Scholar 

  • Tyan, S., Derin, H. and Thomas, J.B. (1976), Two necessary conditions on the representation of bivariate distributions by polynomials, Ann. Statist., 4, 216–222.

    Article  MathSciNet  MATH  Google Scholar 

  • Wong, E. (1963), The construction of a class of stationary Markov processes, Proc. of Symp. in Appl. Math., XVI, AMS, 264–276.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Letac, G. (1997). The Lancaster’s Probabilities on R2 and Their Extreme Points. In: Beneš, V., Štěpán, J. (eds) Distributions with given Marginals and Moment Problems. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5532-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5532-8_21

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6329-6

  • Online ISBN: 978-94-011-5532-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics