Skip to main content

Von Neumann Algebras and Wavelets

  • Chapter
Operator Algebras and Applications

Part of the book series: NATO ASI Series ((ASIC,volume 495))

Abstract

Orthonormal wavelets can be regarded as complete wandering vectors for a system of bilateral shifts acting on a separable infinite dimensional Hilbert space. The local (or “point”) commutant of a system at a vector ψ is the set of all bounded linear operators which commute with each element of the system locally at ψ. In the theory we shall develop, we will show that in the standard one-dimensional dyadic orthonormal wavelet theory the local commutant at certain (perhaps all) wavelets ψ contains non-commutative von Neumann algebras. The unitary group of such a locally-commuting von Neumann algebra parameterizes in a natural way a connected family of orthonormal wavelets. We will outline, as the simplest nontrivial special case, how Meyer’s classical class of dyadic orthonormal wavelets with compactly supported Fourier transform can be derived in this way beginning with two wavelets (an interpolation pair) of a much more elementary nature. From this pair one computes an interpolation von Neumann algebra. Wavelets in Meyer’s class then correspond to elements of its unitary group. Extensions of these results and ideas are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Benedetto, J. (1996) Harmonic Analysis and Applications, CRC Press, Boca Raton.

    MATH  Google Scholar 

  2. Benedetto, J. and Frazier, M. (ed) (1993) Wavelets: Mathematics and Applications. CRC Press, Boca Raton.

    Google Scholar 

  3. Bonami, A., Durand, S. and Weiss, G. (1996) Wavelets Obtained by Continuous Deformations of the Haar Wavelet, Revista Mathematica Iberroamericana, 12.

    Google Scholar 

  4. Bonami, A., Soria, F. and Weiss, G. (1993) Band-Limited Wavelets, J. Geometric Analysis, 3, pp. 543–578.

    Article  MathSciNet  MATH  Google Scholar 

  5. Chui, C.K. (1992) An Introduction to Wavelets. Academic Press, New York.

    MATH  Google Scholar 

  6. Chui, C.K. (ed) (1992) Wavelets: A Tutorial in Theory and Applications. Academic Press, New York.

    MATH  Google Scholar 

  7. Conway, J. (1982) A Course in Functional Analysis. Springer-Verlag, New York.

    Google Scholar 

  8. Dai, X., Gu, Q., Larson D. and Liang, R. Wavelet Multipliers and the Phase of a Wavelet, preprint.

    Google Scholar 

  9. Dai, X. and Larson, D. Wandering Vectors for Unitary Systems and Orthogonal Wavelets, Memoirs A.M.S., to appear.

    Google Scholar 

  10. Dai, X., Larson, D. and Speegle, D. Wavelet sets in ℝn, J. Fourier Anal, and Appl., to appear.

    Google Scholar 

  11. Dai, X. and Liang, R. Path Connectivity and Wavelets, preprint.

    Google Scholar 

  12. Dai, X. and Lu, S. (1996) Wavelets in Subspaces, Mich. Math. J., 43, pp. 81–98.

    Article  MathSciNet  MATH  Google Scholar 

  13. Daubechies, I. (1988) Orthonormal Bases of Compactly Supported Wavelets, Comm. Pure and Appl. Math., 41, pp. 909–1005.

    Article  MathSciNet  MATH  Google Scholar 

  14. Daubechies, I. (1992) Ten Lectures on Wavelets. CBMS 61, SIAM.

    Google Scholar 

  15. Daubechies, I. (ed) (1993) Different Perspectives on Wavelets. Proc. of Symposia in Applied Math., Vol. 47, Amer. Math. Soc.

    Google Scholar 

  16. Dixmier, J. (1981) von Neumann Algebras. North Holland.

    Google Scholar 

  17. Fang, X. and Wang, X. (1996) Construction of Minimally-Supported-Frequencies Wavelets, J. Fourier Anal. Appl., 2, pp. 315–327.

    MathSciNet  MATH  Google Scholar 

  18. Frazier, M., Garrigós, G., Wang, K. and Weiss, G. A Characterization of Functions that Generate Wavelet and Related Expansions, preprint.

    Google Scholar 

  19. Goodman, T.N.T., Lee, S.L. and Tang, W.S. (1993) Wavelets in Wandering Sub-spaces, Trans. Amer. Math. Soc., 338, pp. 639–654.

    Article  MathSciNet  MATH  Google Scholar 

  20. Goodman, T.N.T., Lee, S.L. and Tang, W.S. (1993) Wavelet Bases for a Set of Commuting Unitary Operators, Adv. in Cornp. Math., 1, pp. 109–126.

    Article  MathSciNet  MATH  Google Scholar 

  21. Gu, Q. On Interpolation Families of Wavelet Sets, preprint.

    Google Scholar 

  22. Gu, Q., Han, D., Larson D., and Lu, S. MRA Wavelets Associated with Wavelet Sets, preprint.

    Google Scholar 

  23. Gu, Q. and Larson, D. On Interpolation Pairs of Wavelet Sets, preprint.

    Google Scholar 

  24. Halmos, P.R. A Hilbert Space Problem Book, Second Ed. (1982) Springer-Verlag, New York.

    Google Scholar 

  25. Han, D., Wandering Vectors for Irrational Rotation Unitary Systems, Trans. A.M.S., to appear.

    Google Scholar 

  26. Han, D. and Kamat, V. Operators and Multi-Wavelets, preprint.

    Google Scholar 

  27. Han, D. and Larson, D., Wandering Vector Multipliers, preprint.

    Google Scholar 

  28. Han, D. and Lu, S. Smoothing Approximations and Pathwise Connectivity of MRA Wavelets, preprint.

    Google Scholar 

  29. Hernandez, E., Wang, X. and Weiss, G. (1996) Smoothing Minimally Supported Frequency (MSF) Wavelets: Part I., J. Fourier Anal. Appl., 2 pp. 329–340.

    MathSciNet  MATH  Google Scholar 

  30. Hernandez, E., Wang, X. and Weiss, G. Smoothing Minimally Supported Frequency (MSF) Wavelets: Part II, J. Fourier Anal. Appl., to appear.

    Google Scholar 

  31. Hernandez, E. and Weiss, G. (1996) A First Course on Wavelets, CRC Press, Boca Raton.

    Book  MATH  Google Scholar 

  32. Ionascu, E., Larson, D. and Pearcy, C. On the Unitary Systems Affiliated with Multivariate Wavelet Theory, preprint.

    Google Scholar 

  33. Kadison, R.V. and Ringrose, J.R. (1983, 1986) Fundamentals of the Theory of Operator Algebras. Vol. I and II, Academic Press, New York.

    MATH  Google Scholar 

  34. Kalouptsidis, N., Papadakis, M. and Stavropoulos, T. An Equivalence Relation Between Multiresolution Analyses of L 2(ℝ), Applied Computational and Harmonic Analysis, to appear.

    Google Scholar 

  35. Katznelson, Y. (1976) An Introduction to Harmonic Analysis. Dover, New York.

    MATH  Google Scholar 

  36. Larson, D.R. (1982) Annihilators of Operator Algebras, Topics in Mod. Operator Theory, 6, pp. 119–130, Birkhauser Verlag, Basel.

    MathSciNet  Google Scholar 

  37. LeMarié, P.G. (1988) Ondelettes à localisation exponentielles, J. Math. Pure et Appl., 67, pp. 227–236.

    MATH  Google Scholar 

  38. Li, W., McCarthy, J. and Timotin, D. A Note on Wavelets for Unitary Systems, unpublished note.

    Google Scholar 

  39. Mallat, S. (1989) Multiresolution Approximations and Wavelet Orthonormal Bases of L 2(ℝ), Trans. Amer. Math. Soc., 315, pp. 69–87.

    MathSciNet  MATH  Google Scholar 

  40. Meyer, Y. (1992) Wavelets and Opemtors. Camb. Studies in Adv. Math. 37.

    Google Scholar 

  41. Meyer, Y. (l993) Wavelets: Algorithms and Applications. Transi, from Fr., SIAM, Philadelphia.

    Google Scholar 

  42. Natanson, I.P, (1961) Theory of Functions of a Real Variable. Transi, from Russ., F. Ungar, New York.

    Google Scholar 

  43. Papadakis, M. Unitary Mappings Between Multiresolution Analyses of L 2(ℝ) and a Parameterization of Low-Pass Filters, preprint.

    Google Scholar 

  44. Ruskai, M.B. (ed) (1992) Wavelets and Applications. Jones and Bartlett.

    Google Scholar 

  45. Soardi, P. and Weiland, D., MSF Wavelets in Several Dimensions, preprint.

    Google Scholar 

  46. Speegle, D. The s-Elementary Wavelets are Connected, preprint.

    Google Scholar 

  47. Robinson, C. (1995) Dynamical Systems, CRC Press, Boca Raton.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Larson, D.R. (1997). Von Neumann Algebras and Wavelets. In: Katavolos, A. (eds) Operator Algebras and Applications. NATO ASI Series, vol 495. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5500-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5500-7_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6315-9

  • Online ISBN: 978-94-011-5500-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics