Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 342))

  • 224 Accesses

Abstract

Knowledge of the three-dimensional structure is a prerequisite for the rational design of site-directed mutations in a protein and can be of great importance for the design of drugs. Structural information often greatly enhances our understanding of how proteins function and how they interact with each other or it can, for example, explain antigenic behaviour, DNA binding specificity, etc. X-ray crystallography and NMR spectroscopy are the only ways to obtain detailed structural information. Unfortunately, these techniques involve elaborate technical procedures and many proteins fail to crystallize at all and/or cannot be obtained or dissolved in large enough quantities for NMR measurements. The size of the protein is also a limiting factor for NMR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chothia, C., Lesk, A.M., (1986) The relation between the divergence of sequence and structure in proteins EMBO J., 5 823–836.

    Google Scholar 

  2. Sander, C., Schneider, R (1991) Database of homology-derived protein structures and the structural meaning of sequence alignment.., PROTEINS, 9 56–68.

    Article  Google Scholar 

  3. Swindells, M.B., Thornton, J.M., (1991) Modelling by homology. Curr.Op.Struct. Biol.,1 219–223.

    Article  Google Scholar 

  4. Hilbert, M., Böhm, G., Jaenicke, R (1993), Structural relationships of homologous proteins as a fundamental principle in homology modeling., PROTEINS, 17, 138–151.

    Article  Google Scholar 

  5. Lesk, A.M., Chothia, C., (1980) How different amino acid sequences determine similar protein structures: the structure and evolutionary dynamics of the globins. J.Mot Biol., 136, 225–270.

    Article  Google Scholar 

  6. Kabsch, W., Sander, C., (1984) On the use of sequence homologies to predict protein structure: identical pentapeptides can have completely different conformations. PNAS, 81 1075–1078.

    Article  ADS  Google Scholar 

  7. Chothia, C., Lesk, A.M., (1982) Evolution of proteins formed by b-sheets. I. Plastocyanin and Azurin. J Mol.Biol., 160, 309–323.

    Article  Google Scholar 

  8. Bajorath, J., Stenkamp, R., Aruffo, A., (1993) Knowledge-based model building of proteins: concepts and examples. Prot.Sci., 2, 1798–1810.

    Article  Google Scholar 

  9. Lesk, A.M., Boswell, D.R., (1992) Homology modelling: inferences from tables of aligned sequences. Cuur.Op.Struc. Biol.. 2, 242–247.

    Article  Google Scholar 

  10. Havel, T.F., Snow, M.E., (1991 A new method for building protein conformations from sequence alignments with homologues of known structure. JMo1.Bio1., 217, 1–7.

    Google Scholar 

  11. Reid, L.S., Thornton, J.M., (1989) Rebuilding flavodoxin from Ca coordinates: a test study. PROTEINS, 5,170–182.

    Article  Google Scholar 

  12. Greer, J., (1991) Comparative modeling of homologous proteins. Meth.Enzym., 202, 239–252.

    Article  Google Scholar 

  13. Sudarsanam, S., March, C.J., Srinivasan, S., (1994) Homology modeling of divergent proteins JMol. Biol., 241, 143–149.

    Article  Google Scholar 

  14. Lee, R.H (1992) Protein model building using structural homology., Nature, 356, 543–544.

    Article  ADS  Google Scholar 

  15. Sali, A., Blundell, T.L., (1993) Comparative modelling by satisfaction of spatial restraints. 234, 779–815.

    Google Scholar 

  16. Summers, N.L., Karplus, M., (1990) Modelling of globular proteins. A distance based search procedure for the construction of insertion regions and pro <-->non-pro mutations. J Mol.Biol. 216, 991–1016.

    Article  Google Scholar 

  17. Schiffer, C.A., Caldwell, J.W., Kollmann, P.A., Stroud, R.M., (1990) Prediction of homologous protein structures based on conformational searches and energetics. PROTEINS, 8, 30–43.

    Article  Google Scholar 

  18. Swindells, M.B., Thornton, J.M., (1991 Modelling by homology. Curr.Op.StrucB iol., 1, 219–223.

    Article  Google Scholar 

  19. Moult, J., Pedersen, J.T., Judson, R., Fidelis, K., (1995) A large scale experiment to assess protein structure prediction methods. PROTEINS, 23, 2–4.

    Article  Google Scholar 

  20. Mosimann, S., Meleshko, R., James, N.G., (1995) A critical assessment of comparative molecular modeling of tertiary structures of proteins. PROTEINS, 23, 301–317.

    Article  Google Scholar 

  21. Harrison, R.W., Chatterjee, D., Weber, I.T., (1995) Analysis of six protein structures predicted by comparative modelling techniques. Proteins, 23, 463–471.

    Article  Google Scholar 

  22. Cardozo, T., Totrov, M., Abagyan, R., (1995) Homology modelling by the ICM method. PROTEINS, 23, 403–414.

    Article  Google Scholar 

  23. Church, W.B., Palmer A.,, Wathey, J.C., Kitson, D.H., (1995) Homology modelling of histidine-containing phosphocarrier protein and eosinophil-derived neurotoxin: construction of models and comparison with experiment. PROTEINS, 23, 422–430.

    Article  Google Scholar 

  24. Samudrala, R., Pedersen, J.T., Thou, H.-B., Luo, R., Fidelis, K., Moult, J., (1995) Confronting the problem of interconnected structural changes in the comparative modeling of proteins. PROTEINS, 23, 327–336.

    Article  Google Scholar 

  25. Sali, A., Potterton, L, Yuan, F., Vlijmen, H. van, Karplus, M., (1995) Evaluation of comparative protein modeling by MODELLER. PROTEINS, 23, 318–326.

    Article  Google Scholar 

  26. Sali, A., (1995) Modelling mutations and homologous proteins. Curr.Op.Struc. Biol., 6, 437–451.

    Google Scholar 

  27. Vriend, G., Sander, C., (1991) Detection of common three dimensional substructures in proteins. PROTEINS 11, 52–58.

    Article  Google Scholar 

  28. Russell, R.B., Barton, G.J., (1992) Multiple protein structure alignment from tertiary structure comparison: assignment of global and residue confidence levels. PROTEINS 14 309–323.

    Article  Google Scholar 

  29. Bowie, J.U., Clarke, N.D., Pabo, C.O., Sauer, R.T., (1990) Identification of protein folds: Matching hydrophobicity patterns of sequence sets with solvent accessibility patterns of known structures. PROTEINS 7, 257–264.

    Article  Google Scholar 

  30. Grindley, H.M., Artymiuk, P.J., Rice, D.W., Willett, P., (1993) Identification of tertiary structure resemblance in proteins using a maximal common subgraph isomorphism algorithm. J.Mo Biol., 229, 707–721.

    Article  Google Scholar 

  31. Zuker, M., Somorjai, R.L., (1989) The alignment of protein structures in three dimensions. Bull. Math. Biol. 51 55–78.

    MathSciNet  MATH  Google Scholar 

  32. A rapid method for protein structure alignment. J.Theor.Biol.(1990) 147, 517–551.

    Article  Google Scholar 

  33. Orengo, C.A., Taylor, W.R., Overington, J.P., (1992) Comparison of three-dimensional structures of homologous proteins. Curr.Op.Struc.Biol., 2, 394–401.

    Article  Google Scholar 

  34. Z. -Y., Sali, A., Blundell, T.L., (1992) A variable gap penalty function and feature weights for protein 3-D structure comparisons. Prot.Engin., 5,43–51.

    Article  Google Scholar 

  35. Orengo, C.A., Brown, N.P., Taylor, W.R., (1992) Fast structure alignment for database searching.PROTEINS. 14, 139–167.

    Article  Google Scholar 

  36. Zhu, Maiorov, V.N., Crippen, G.M., (1995) Size independent comparison of protein three dimensional structures. PROTEINS, 22, 273–283.

    Article  Google Scholar 

  37. Alexandrov, N.N., Takahashi, K., Go, N., (1992) Common spatial arrangements of backbone fragments in homologous and non-homologous proteins. J.Mo! Biol.,225, 5–9.

    Article  Google Scholar 

  38. Fisher, D., Bachar, O., Nussinov, R., Wolfson, H., (1992) An efficient automated computer vision based technique for detection of three dimensional structural motifs in proteins. J.Biolol.Struct.&Dyn.9 769–789.

    Article  Google Scholar 

  39. Pepperrell, C., Willett, P., (1991) Techniques for the calculation of three dimensional structural similarity using interatomic distances. J.Comp.-Aid.Mol.Des., 5, 455–474.

    Article  Google Scholar 

  40. Maiorov, V.N., Crippen, G.M., (1994) Significance of root-mean-square deviation in comparing three-dimensional structures of globular proteins. J.Mol.Biol.,235, 625–634.

    Article  Google Scholar 

  41. Brown, N.P., Orengo, C.A., Taylor, W.R., (1996) A protein structure comparison methodology. Comp.Chem 20, 359–380.

    Article  Google Scholar 

  42. Taylor, W.R., Orengo, C.A., (1988) Protein structure alignment. J. Mol. Biol. 208, 1–22.

    Article  Google Scholar 

  43. Sali, A., Blundell, T.L., (1990) Definition of general topological equivalence in protein structures. J.Mol.Biol. 212, 403–428.

    Article  Google Scholar 

  44. Flores, T.P., Orengo, C.A., Moss, D.S., Thornton, J.M., (1993) Comparison of conformational characteristics in structurally similar protein pairs. Prot.Sci. 2, 1811–1826.

    Article  Google Scholar 

  45. Holm, L., Sander, C., (1993) Protein structure comparison by alignment of distance matrices. J. Mol. Biol., 233 123–138.

    Article  Google Scholar 

  46. Biological meaning, statistical significance, and classification of local spatial similarities in nonhomologous proteins. Prot.Sci., 3 866–875.

    Google Scholar 

  47. Brändén, C.-I., (1990) Founding fathers and families. Nature, 346, 607–608.

    Article  ADS  Google Scholar 

  48. Holm, L., Ouzounis, C., Sander, C., Tuparev, G., Vriend, G., (1992) A database of protein structure families with common folding motifs. Prot.Sci. 1 1691–1698.

    Article  Google Scholar 

  49. Holm, L., Sander, C., (1994) Searching protein structure databases has come of age. PROTEINS 19, 165–173.

    Article  Google Scholar 

  50. Murzin, A.G., Brenner, S.E., Hubbard, T., Chothia, C., (1995) SCOP: A structural classification of proteins database for investigation of sequence and structures. J.Mol.Biol. 247, 536–540.

    Google Scholar 

  51. Murzin, A.G (1993) OB (oligonucleotide/oligosaccharide binding)-fold: common structural and functional solution for non-homologous sequences., EMBO 12, 861–867.

    Google Scholar 

  52. Russell, R.B., Batton, G.J., (1994) Structural features can be unconserved in proteins with similar folds. J.Mol.Biol. 244, 332–350.

    Article  Google Scholar 

  53. Laurents, D.V., Subbiah, S., Levitt, M., (1994) Different protein sequences can give rise to highly similar folds through different stabilizing interactions. Prot.Sci. 3, 1938–1944.

    Article  Google Scholar 

  54. Kamphuis I.G., Drenth, J., Baker, E.N., (1985) Thiol proteases. Comparative studies on the high resolution structures of papain and actinidin, and on amino acid sequence information for cathepsins B and H, and stem bromelian., 182 317–329.

    Google Scholar 

  55. Pearl, L (1993) Similarity of active-site structures., Nature 362, 24.

    Article  ADS  Google Scholar 

  56. Fisher, D., Wolfson, H., Lin, S.L., Nussinov, R., (1994) Three-dimensional, sequence order-independent structural comparison of a serine protease against the crystallographic database reveals active site similarities: potential implications to evolution and to protein folding. Prot.Sci. 3, 769–778.

    Article  Google Scholar 

  57. Perry, K.M., Fauman, E.B., Finer-Moore, J.S., Montfort, W.R., Maley, G.F., Maley, F., Stroud, R.M., (1990) Plastic adaptation toward mutation in proteins: structural comparison of thymidilate synthases. PROTEINS, 8, 315–333.

    Article  Google Scholar 

  58. Park, J.E., Rice, D.W., Willett, P., (1992) Three dimensional structural resemblance between leucine aminopeptidase and carboxypeptidase A revealed by graph-theoretical techniques. FEBS Lt., 303 48–52.

    Article  Google Scholar 

  59. Swindells, M.B., Orengo, C.A., Jones, D.T. Pearl, L.H., Thomson, J.M (1993) Recurrence of a binding motif? Nature, 362, 299.

    Google Scholar 

  60. PROCHECK: (1993) a program to check the stereochemical quality of protein structures. R.A., MacArthur, M.W., Moss, D.S., Thornton, J.M., J. Appl.Cryst., 26, 283–291.

    Google Scholar 

  61. Laskowski, Morris, A.L., MacArthur, M.W., Hutchinson, E.G., Thornton, J.M., (1992) Stereochemical quality of protein-structure coordinates. PROTEINS, 12 345–364.

    Article  Google Scholar 

  62. Hooft, R.W.W., Vriend, G., Sander, C., Abola, E.E (1996) Errors in protein structures., Nature, 381 272.

    Article  ADS  Google Scholar 

  63. Sippl, M.J., (1993) Recognition of errors in three dimensional structures of proteins. PROTEINS, 17 355–362.

    Article  Google Scholar 

  64. Lüthy, R., Bowie, J.U., Eisenberg, D., (1992) Assessment of protein models with three dimensional profiles. Nature, 356 83–85.

    Article  ADS  Google Scholar 

  65. Novotny, J., Rashin, A.A., Brucoleri, R.E., (1988) Criteria that discriminate between native proteins and incorrectly folded models. PROTEINS, 4, 19–30.

    Article  Google Scholar 

  66. Blundell, T.L., Sibanda, B.L., Sternberg, M.J.E., Thornton, J.M., (1987) Knowledge-based prediction of protein structures and the design of novel molecules. Nature, 326, 347–352.

    Article  ADS  Google Scholar 

  67. Naor, D., Fisher, D., Jernigan, R.L., Wolfson, H.J., Nussinov, R, (1996) Amino acid pair interchanges at spatially conserved locations. J. Mol. Biol., 256, 924–938.

    Article  Google Scholar 

  68. Overington, J., Donnelly, D., Johnson, M.S., Sali, A., Blundell, T.L (1992) Environment-specific amino acid substitution tables: tertiary templates and prediction of protein folds., Prot.Sci., 1, 216–226.

    Article  Google Scholar 

  69. Abagyan, R., Frishman, D., Argos, 0., (1994) Recognition of distantly related proteins through energy calculations. PROTEINS, 19, 132–140.

    Article  Google Scholar 

  70. Bryant, S.H., Lawrence, C.E., (1993) An empirical energy function for threading protein sequence through the folding motif PROTEINS, 16, 92–112.

    Article  Google Scholar 

  71. Ouzounis, C., Sander, C., Scharf, M., Schneider, R., (1993) Prediction of protein structure by evaluation os sequence structure fitness. J. Mol. Biol., 232, 805–825.

    Article  Google Scholar 

  72. Madej, T., Gibrat, J.-F., Bryant, S.H., (1995) Threading a database of protein cores. PROTEINS, 23, 356–369.

    Article  Google Scholar 

  73. Lamer, C.M.-R., Rooman, M.J., Wodak, S.J.,, (1995) Protein structure prediction by threading methods: evaluation of current techniques. PROTEINS 23, 337–355.

    Article  Google Scholar 

  74. Hubbard, T.J., Park, J., Fold (1995) Recognition and ab initio structure predictions using hiddem markov models and b-strand pair potentials. PROTEINS, 23, 398–402.

    Article  Google Scholar 

  75. Lathrop, R.H., Smith, T.F., Sciences (1994) A branch-and-bound algorithm for optimal protein threading with pairwise (contactpotential) amino acid interactions. Proc. 27-th Hawaii Intl. Conf. on System IEEE Comp. Soc. Press. 365–374.

    Google Scholar 

  76. Johnson, M.S., Overington, J.P., (1993) A structural basis for sequence comparisons. J.Mol. Biol., 233, 716–738.

    Article  Google Scholar 

  77. Stultz, C.M., White, J.V., Smith, T.F., (1993) Structural analysis based on state-space modeling. Prot Sci., 2, 305–314.

    Article  Google Scholar 

  78. Bowie, J.U., Lüthy, R., Eisenberg, D., (1991) A Method to identify protein sequences that fold into a known three dimensional structure. Science, 253, 164–170.

    Article  ADS  Google Scholar 

  79. Pearson, W.R (1990) Rapid and sensitive comparison with FASTA and FASTP., Meth.Enzym., 183, 63–98.

    Article  Google Scholar 

  80. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J., (1990) Basic local alignment search tool. JMol.Biol., 215, 403–410.

    Google Scholar 

  81. Delarue, M., Koehl, P., (1995) Atomic environment energies in proteins defined from statistics of accessible and contact surface areas. J.Mol. Biol., 249, 675–690.

    Article  Google Scholar 

  82. Holm, L., Sander, C., ., (1992) Evaluation of protein models by atomic solvation preference. J Mol.Bio l 225, 93–105.

    Article  Google Scholar 

  83. Taylor, W.R., (1986) Identcation of protein sequence homology by consensus template alignment. J.Mol.Biol., 188, 233–258.

    Article  Google Scholar 

  84. Vingron, M., Argos, O., (1989) A fast and sensitive multiple sequence alignment algoritm. CABIOS, 5, 115–121.

    Google Scholar 

  85. Subbiah, S., Harrison, S.C., (1989) A method for multiple sequence alignment with gaps. JMol. Biol., 209, 539–548.

    Article  Google Scholar 

  86. Lüthy, R., Xenarios, I., Bucher, P., (1994) Improving the sensitivity of the sequence profile method. Prot.Sci., 3 139–146.

    Article  Google Scholar 

  87. Smith, R.F., Smith, T.F., (1992) Pattern-induced multi sequence alignment (PIMA) algorithm employing secondary structure-dependent gap penalties for use in comparative protein modelling. Prot.Engin., 5 35–41.

    Article  Google Scholar 

  88. Higgins, D.G., (1992) Sequence ordinations: a multivariate analysis approach to analysing large sequence data sets. CABIOS, 8 15–22.

    Google Scholar 

  89. Barton, G.J., Sternberg, MJ.E., (1987) A strategy for the rapid multiple alignment of protein sequences. Confidence levels from tertiary structure comparisons.J.Mol.Biol., 198 327–337.

    Article  Google Scholar 

  90. Yi, T.-M., Lander, E.S., (1994) Recognition of related proteins by iterative template refinement. Prot.Sci., 3 1315–1328.

    Article  Google Scholar 

  91. Mang, K.Y.J., Eisenberg, D., (1994) The three dimensional profile method using residue preference as a continuous function of residue environment. Prot.Sci., 3, 687–695.

    Google Scholar 

  92. Brown, W.J., North, A.C.T., Phillips, D.C., Brew, K., Vanaman, T.C., Hill, R.C., (1969) A possible three-dimensional structure of bovine a-lactalbumin based on that of hen’s egg-white lysozyme. J.Mol. Biol., 42, 65–86.

    Article  Google Scholar 

  93. Wanne, P.K., Momany, F.A., Rumball, S.V., Scheraga, H.A., (1974) Computation of structure of homologous proteins: a-lactalbumin from lysozyme. Biochemistry 13 768–782.

    Article  Google Scholar 

  94. Laughton, C.A., Prediction of protein side-chain conformations from local three dimensional homology reletionships. (1994)J.Mol.Biol., 235, 1088–1097.

    Article  Google Scholar 

  95. McGregor, M.J., Islam, S.A., Sternberg, M.J.E., (1987) Analysis of the relationship between side-chain conformation and secondary structure in globular proteins. J.Mol.Biol.198 295–310

    Article  Google Scholar 

  96. Plnder, J.W., Richards, F.M., (1987) Tertiary templates for proteins. J.Mol.Biol.193 775–791

    Article  Google Scholar 

  97. Schrauber, H., Eisenhaber, F., Argos, 0. (1993) Rotamers, to be or not to be? J Mol Biol.230592–612.

    Article  Google Scholar 

  98. Holm, L., Sander, C., (1992) Fast and simple Monte Carlo algorithm for side chain optimization in proteins: application to model building by homology. PROTEINS, 14, 213–223.

    Article  Google Scholar 

  99. Summers, N.L., Karplus, (1991) M., Modelling of side chains, loops and insertions in proteins.Meth.Enzym. 202, 156–205

    Article  Google Scholar 

  100. Summers, N.L., Karplus, M., (1989) Construction of side-chains in homology modelling. Application to the C-terminal lobe of rhizopuspepsin. J.Mol.Biol. 210 785–811.

    Article  Google Scholar 

  101. Eisenmenger, F., Argos, O., Abagyan, R., (1993) A method to configure protein side-chains from the main-chain trace in homology modelling.J.Mol. Biol. 231 849–860.

    Article  Google Scholar 

  102. Desmet, J., Maeyer, M. De., Hazes, B., Lasters, I (1992) The dead-end elimination theorem and its use in protein side-chain positioning., Nature, 356 539–542.

    Article  ADS  Google Scholar 

  103. Taylor, W, (1992) New paths from death ends.,Nature 356 478–480.

    Article  ADS  Google Scholar 

  104. Filippis, V.de, Sander, C., Vriend, G., (1994) Predicting local structural changes that result from point mutations Prot Engin.7, 1203–1208.

    Article  Google Scholar 

  105. Dunbrack, R.L.Jr., Karplus, M., (1993) Backbone-dependent rotamer library for proteins. Application to side-chain prediction. JMol. Biol. 230, 543–574.

    Article  Google Scholar 

  106. Stites, W.E., Meeker, A.K., Shortle, D (1994) Evidence for strained interactions between side-chains and the polypeptide backbone., J.Mo1Biol. 235 27–32.

    Article  Google Scholar 

  107. Dunbrack, R.L.Jr., Karplus, (1994) Conformational analysis of the backbone dependent rotamer preferences of protein side chains. Nature Struc.Biol. 5 334–340.

    Article  Google Scholar 

  108. Chinea, G., Padron, G., Hooft, R.W.W., Sander, C., Vriend, G., (1995) The use of position specific rotamers in model building by homology. PROTEINS 23 415–421.

    Article  Google Scholar 

  109. Totrov, M.M., Abagyan, R.A., (1994) Detailed ab initio prediction of lysozyme-antibody complex with 1.6 A accuracy. Nature Struct. Biol., 1, 259–265.

    Article  Google Scholar 

  110. Lee C., Levitt, M., (1991) Accurate prediction of stability and activity effects of site directed mutagenesis on a protes i core. Nature 352, 448–451.

    Article  ADS  Google Scholar 

  111. Gunsteren, W.F. van, Mark, A.E., (1992) Prediction of the stability and activity effects of site directed mutagenesis. J Mol.Biol., 227, 389–395.

    Article  Google Scholar 

  112. Simonson, T., Brunger, A.T., (1992) Thermodynamics of protein peptide interactions in the ribonuclease S system studied by molecular dynamics and free energy calculations. Biochemistry 31, 8661–8674.

    Article  Google Scholar 

  113. Vriend, G., Eijsink, V.G.H., (1993) Prediction and analysis of structure, stability and unfolding of thermolysin like proteases. J.Comp.-Aid Mol Des. 7, 367–396.

    Article  Google Scholar 

  114. Vriend, G., Sander, C., Stouten, P.W.F (1994) A novel search method for protein sequence-structure relations using property profiles., Prot Engin. 7, 23–29.

    Google Scholar 

  115. Jones, T.A., Thirup, S., (1986) using known substructures in protein model building and crystallography. EMBO, J., 5,819–823.

    Google Scholar 

  116. Hobohm, U., Scharf, M., Schneider, R., Sander, C., (1992) Selection of representative protein data sets. Prot.Sci., 1, 409–417.

    Article  Google Scholar 

  117. Hooft, R.W.W., Sander., C., Vriend, G., Verification of protein structures: side-chain planarity. Cabins, accepted.

    Google Scholar 

  118. Parsaye K., Chignell, M., Khoshafian, S., Wong, H., (1989). Intelligent databases. John Wiley and sons, Inc

    Google Scholar 

  119. Bryant, S.H., (1989) PKB: A program system and data base for analysis of protein structure. PROTEINS 5, 233–247.

    Article  Google Scholar 

  120. Vriend, G., (1990) Parameter relation rows: a query system for protein structure function relationships. Prot Engin., 4, 221–223.

    Article  Google Scholar 

  121. A relational data base of protein structures designed for flexible enquiries about conformation. Prot Engin., 2, 431–442.

    Google Scholar 

  122. Gray, P.M.D., Paton, N.W., Kemp, G.J.L., Fothergill, J.E., (1990) An object oriented database for protein structure analysis. Prot.Engin., 3, 235–243.

    Article  Google Scholar 

  123. Huysmans, M., Richelle, J., Wodak, S.J., (1991) SESAM: A relational database for structure and sequence of macromolecules. PROTEINS, 11, 59–76.

    Article  Google Scholar 

  124. Bemstein, F. C., Koetzle, T. F., Williams, G. B., Meyer, E. F. Jr.,Brice, M. D., Rodgers, J. R., Kennard, O., Shimanouchi, T.; Tatsumi, M. (1977) The protein data bank: A computer based archival file for macromolecular structures. JMol.Biol. 112, 535–542.

    Article  Google Scholar 

  125. Schultze-Kremer, S., King, R.D (1992) IPSA-Inductive protein structure analysis., Prot Engin., 5, 377–390.

    Article  Google Scholar 

  126. Read, R.L., Davison, D., Chappelear, J.E., Garavelli, J.S., (1992) GBPARSE: a parser for the GenBank flat-file format with new feature table format. CABIOS, 8 407–408.

    Google Scholar 

  127. Lesk, A.M., Boswell, D,R., Lesk, V.I, Lesk, V.E., Bairoch, A., (1989) A cross reference table between the protein data bank of macromolecular structures and the national biomedical research foundation protein identification resource amino acid sequence data bank. Prot.Seq Data.Anal., 2, 295–308.

    Google Scholar 

  128. Stoehr, P.J., Cameron, G.N (1991) The EMBL data library., NAR, 19 2227–2230.

    Article  Google Scholar 

  129. Thorton, J.M., Gardner, S.P (1989) Protein motifs and database searching., TIBS, 14 300–304.

    Google Scholar 

  130. Kamel, N.N., (1992) A profile for molecular biology databases and information resources. CABIOS, 8 311–321.

    Google Scholar 

  131. Jia, Z., Quail, J. W., Waygood, E. B., Delbaerre L. T. J. (1993) To be published., Deposited in the PDB.

    Google Scholar 

  132. Rodriguez, R., Vriend, G., Limits to modelbuilding by homology. to be submitted.

    Google Scholar 

  133. Jia, Z., Vandonselaar, M., Hengstenberg W.,,Quail, J. W., Delbaerre L. T. J. (1993), To be published. Deposited in the PDB.

    Google Scholar 

  134. Fitzgerald, P. M. D., Mc Keever, B. M., Van Middlesworth, J. F., Springer, J. P., Heimbach, J. C., Leu, C. T., Herber, W. K., Dixon, R. A. F., Darke, P. L. (1990) Crystallographic analysis of a complex between human immunodeficiency virus type 1 protease and acetyl pepstatin at 2.0 Angstrom resolution. J. Biol. Chem. 265 14209-.

    Google Scholar 

  135. Huang, Q., Liu, S., Tang, Y. (1993) Refined 1.6 A resolution crystal structure of the complex formed between porcine 13-trypsin and MCTI-A, a trypsin inhibitor of the squash family. J. Mol. Biol. 229 1022-.

    Article  Google Scholar 

  136. G. Vriend (1990) WHAT IF: A molecular modelling and drug design program., J.Mol.Graph. 8 52–56.

    Article  Google Scholar 

  137. Hubbard, R.E.,, (1986) In: Computer Graphics and molecular modelling. Edt. Fletterick, RJ., Zoller, M., Cold Spring Harbor 9–12.

    Google Scholar 

  138. Jones, T.A., (1978) A graphics modelbuilding and refinement system for macromolecules. JAppl.Cryst. 268–272.

    Google Scholar 

  139. Dayringer, H.E., Tramontano, A., Fletterick, R.J., (1986) Interactive program for visualization and modelling of proteins, nucleic acids and small molecules. J.Mol.Graph. 4 82–87.

    Article  Google Scholar 

  140. Jones, T.A., Zou, J.Y., Cowan, S.W., Kjelgaard, M., (1991) Improved methods for buildin protein models in electron density maps and the location of errors in these models. Acta Cryst A 47 110–119.

    Article  Google Scholar 

  141. Schomburg, D., Reichelt, J., (1988) BRAGI: A comprehensive protein modelling program system. J.Mol.Graph. 6,161–165.

    Article  Google Scholar 

  142. Moult, J., James, M.N.G., (1986) An algorithm for determining the conformation of polypeptide segments in proteins by systematic search. PROTEINS 1 146–163.

    Article  Google Scholar 

  143. Bruccoleri, R.E., Karplus, M., (1987) Prediction of the folding of short polypeptide segments by uniform conformational sampling. Biopolymers 26, 137–168.

    Article  Google Scholar 

  144. Fine, R.M., Wang, H., Shenkin, P.S., Yarmush, D.L., Levinthal, C (1986) Predicting antibody hypervariable loop conformations. II: minimization and molecular dynamics studies of MCPC603 from many randomly generated loop conformations., PROTEINS 1 342–362.

    Article  Google Scholar 

  145. Havel, T.F., Snow, M.E., (1990) A new method for building protein conformations from sequence alignments with homologues with know structure. J.Mol.Biol. 217 1–7.

    Article  Google Scholar 

  146. Sippl, M.J., Hendlich, M., Lackner, P., (1992) Assembly of polypeptide and backbone conformations from low energy ensambles of short fragments. Prot.Sci. 1 625–640.

    Article  Google Scholar 

  147. Simon, I., Glasser, L., Scheraga, H.A., (1991) Calculation of protein conformation as an assembly of stable overlapping segments: application to BPTI. PNAS 88, 3661–3665.

    Article  ADS  Google Scholar 

  148. Ripoll, D.R., Scheraga, H.A., (1990) On the multiple minima problem in the conformational analysis of polypeptides. Biopolymers 30, 165–176.

    Article  Google Scholar 

  149. Moult, J., Judson, R., Fidelis, K., Pedersen, J.T., (1995) A large scale experiment to assess protein structure prediction methods. PROTEINS 23, ii-iv.

    Article  Google Scholar 

  150. Baumann, G., Froemmel, C., Sander, C., (1989) Polarity as a criterion in protein design. Prot.Engin. 2, 329–334.

    Article  Google Scholar 

  151. Bryant, S.H., Amzel., L.M., (1987) Correctly folded proteins make twice as many hydrophobic contacts. IntJ.Pept.Prot.Res. 29, 46–52.

    Article  Google Scholar 

  152. Hendlich, M., Lackner, P., Weitcus, S., Floeckner, H., Froschauer, R., Gottsbacher, K., Cassari, G., Sippl, M.J., (1990) Identification of native protein folds amongst a large number of incorrect models. J.Mol.Biol. 216 167–180.

    Article  Google Scholar 

  153. Morris, A.L., MacArthur, M.W., Hutchinson, E.G., Thorton, J.M., (1992) Stereochemical quality of protein structure coordinates. PROTEINS 12, 3456–364.

    Article  Google Scholar 

  154. Eisenberg, D., McLachlan, A.D., (1986) Solvation energy in protein folding and binding. Nature, 319, 199–203.

    Article  ADS  Google Scholar 

  155. Gregoret, L.M., Cohen, F.E., (1990) Novel method for the rapid evaluation of packing in protein structures. J.Mol.Biol. 211, 959–974.

    Article  Google Scholar 

  156. Vriend, G., Sander, C., (1993) Quality control of protein models: directional atomic contact analysis. JAppl.Cryst. 26, 47–60.

    Article  Google Scholar 

  157. Van Gunsteren, W.F., Berendsen, H.J., (1987) GROMOS. BIOMOS, Biomolecular software, Lab. Phys. Chem., Uni., Groningen, The Netherlands.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rodriguez, R., Vriend, G. (1997). Professional Gambling. In: Vergoten, G., Theophanides, T. (eds) Biomolecular Structure and Dynamics. NATO ASI Series, vol 342. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5484-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5484-0_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6307-4

  • Online ISBN: 978-94-011-5484-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics