Skip to main content

Pulmonary edema and other disorders in acute renal failure

  • Chapter
Critical Care Nephrology

Abstract

A wide variety of pulmonary disorders are associated with renal insufficiency. Pulmonary edema is probably the most common and among the most serious complications of uremia. Patients with renal disease may also experience intrapulmonary hemorrhage. Retention of fluid can result in the accumulation of fluid in the pleural or abdominal compartments, resulting in restriction of lung volumes. Lastly, treatment of renal failure can result in lung injury. This chapter considers the regulation of both gas and fluid exchange in the lungs. This is followed by a discussion of each of the major pulmonary abnormalities which occur in patients with renal failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Thadhani R, Pascual M, Bonventre JV. Acute renal failure. N Engl J Med 1996; 334: 1448–60.

    Article  PubMed  CAS  Google Scholar 

  2. Lohr JW, McFarlane JM, Grantham JJ. A clinical index to predict survival in acute renal failure patients requiring dialysis. Am J Kidney Dis 1988; 11: 254–9.

    PubMed  CAS  Google Scholar 

  3. Mehta RL. Therapeutic alternatives to renal replacement for critically ill patients in acute renal failure. Sem Nephrology 1996; 14: 64–82

    Google Scholar 

  4. Kedem O. Katchalsky A. Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. (classical article.) Biochim Biophys Acta 1958; 1000: 413–30, 1989.

    Google Scholar 

  5. Starling EH. On the absorption of fluids from the connective tissue. J Physiol (Lond) 1895–1896; 19: 312–26.

    Google Scholar 

  6. Starling EH. Physiological factors involved in the causation of dropsy. Lancet 1 1896; 1267–70.

    Google Scholar 

  7. Glazier JB, Hughes JMB, Malone JE, West JB. Measurements of capillary dimensions and blood volume in rapidly frozen lung. J Appl Physiol 1969; 26: 65–76.

    PubMed  CAS  Google Scholar 

  8. Rosenzweig DY, Hughes JMB, Glazier JB. Effect of transpulmonary and vascular pressures on pulmonary blood volume in isolated lung. J Appl Physiol 1970; 28: 553–60.

    PubMed  CAS  Google Scholar 

  9. Patlack CS. Goldstein DA, Hoffman JF. The flow of solute and solvent across a two membrane system. J Theor Biol 1963; 5: 425–42.

    Google Scholar 

  10. Parker JC, Perry MA, Taylor AE. Permeability of the Microvascular Barrier. In: Edema, edited by NC Staub and AE Taylor. P. 1984; 143–87.

    Google Scholar 

  11. Guyton AC, Lindsey AW. Effect of elevated left atrial pressure and decreased plasma protein concentration on the development of pulmonary edema. Circ Res 1959; 7: 649–57.

    Article  PubMed  CAS  Google Scholar 

  12. Parker, JC, Ryan J, Taylor AE. Plasma-lymph albumin kinetics, total lymph flow and tissue hematocrit in normally hydrated dog lungs. Microvasc Res 1984; 28: 256–69.

    Article  Google Scholar 

  13. Weibel ER, Bachofen H. Structural design of the alveolar septum and fluid exchange. In Pulmonary Edema, eds. A.P. Fishman and E.M. Am Phys Soc 1979; 1–20.

    Google Scholar 

  14. Staub NC, Nagano H, Pearce ML. Pulmonary edema in dogs, especially the sequence of fluid accumulation in the lungs. J Appl Physiol 1967; 22: 227–40.

    PubMed  CAS  Google Scholar 

  15. Schneeberger EE, Karnovsky MJ. The influence of intravascular fluid volume on the permeability of newborn and adult mouse lung to ultrastructural tracers. J Cell Biol 1971; 49: 319–34.

    Article  PubMed  CAS  Google Scholar 

  16. Pietra GG, Fishman AP. Bronchial venular leakage during endotoxin shock. Am J Pathol 1974; 77: 387–406.

    PubMed  CAS  Google Scholar 

  17. Schneeberger EE, Karnovsky MJ. Substructure of intercellular junctions in freeze-fractured alveolar-capillary membranes of mouse lung. Circ Res 1976; 38: 401–11.

    Article  Google Scholar 

  18. Effros, RM, Hacker A, Silverman P, Hukkanen J. Protein concentrations have little effect on reabsorption of fluid from isolated rat lungs. J Appl Physiol 1991; 70: 416–22.

    PubMed  CAS  Google Scholar 

  19. Rinderknecht J, Shapiro L, Krauthammer M, Uszler JM, Taplin G, Effros RM. Solute transfer across the alveolar capillary membrane in pulmonary accelerated clearance of small solutes from the lungs in interstitial lung disease. Am Rev Respir Dis 1980; 121: 105–17.

    PubMed  CAS  Google Scholar 

  20. Huchon, G.J. Radioaerosol studies of the pulmonary epithelium. In: Fluid and Solute Transport in the Airspaces of the Lungs. RM Effros and HK Chang (eds). Vol. 70 Lung Biology in Health and Disease. Executive Editor. C Lenfant. 1994.

    Google Scholar 

  21. Mason GR, Effros RM, Uszler JM, Mena I. Small solute clearance from the lungs of patients with cardiogenic and noncardiogenic pulmonary edema. Chest 1985; 88: 327–34.

    Article  PubMed  CAS  Google Scholar 

  22. Belcher NG, Rees PJ. Changes in pulmonary clearance of technetium labelled DTPA during hemodialysis. Thorax 1986; 381–5.

    Google Scholar 

  23. Murray JF. Ch: Pulmonary Circulation. The Normal Lung. WB Saunders Company, Philadelphia, PA. 1986.

    Google Scholar 

  24. Gee, M.H, Spath J. A. Jr. The dynamics of lung fluid filtration system in dogs with edema. Circ Res 1980; 46: 796–801.

    Article  PubMed  CAS  Google Scholar 

  25. Conhaim, R.L. Movement of fluid and particles between the airspaces and pulmonary interstitium. In: Fluid and Solute Transport in the Airspaces of the Lungs. RM Effros and HK Chang (eds). Vol. 70 Lung Biology in Health and Disease. Executive Editor. C. Lenfant. 1994.

    Google Scholar 

  26. van O G. Widdicombe, Wright EM. Volume flow across gallbladder epithelim induced by small hydrostatic and osmotic gradients. J Membr Biol 1979; 49: 1–20.

    Article  Google Scholar 

  27. Masib RJ, Williams MC, Widdicombe JH, Sander MJ, Misfeldt DS, Berry LC. Transepithelial transport by pulmonary type II cells in primary culture. Proc Natl Acad Sci USA 1982; 79: 6033–7.

    Article  Google Scholar 

  28. Goodman BE, Crandall ED. Dome formation in primary cultured monolayers of alveolar epithelial cells. Am J Physiol 1982; 243: C96–100.

    PubMed  CAS  Google Scholar 

  29. Matthay MA, Landolt CC, Staub NC. differential liquid and protein clearance from the alveoli of anesthetized sheep. J Appl Physiol 1982; 53: 96–104.

    PubMed  CAS  Google Scholar 

  30. Basset G, Crone C, Saumon G. Significance of active transport on transalveolar water absorption: a study in isolated rat lung. J Physiol Lond 1987; 384: 311–24.

    PubMed  CAS  Google Scholar 

  31. Basset G, Crone C, Saumon G. Fluid absorption by rat lung in situ pathways for sodium entry in the luminal membrane of alveolar epithelium. J Physiol Lond 1987; 384: 325–345.

    PubMed  CAS  Google Scholar 

  32. Effros RM, Mason GR, Silverman P. New evidence for active fluid transport in edematous rat lungs. J Appl Physiol 1989; 66: 906–19.

    PubMed  CAS  Google Scholar 

  33. Matthay MA, Landolt CC, Staub NC. Differential liquid and protein clearance from the alveoli of anesthetized sheep. J Appl Physiol 1982; 53: 96–104.

    PubMed  CAS  Google Scholar 

  34. Agre P, Preston GM, Smith BL, Jung JS, Raina S, Monon C, Guggino WB, Nielsen S. Aquaporin CHIP: the archetypal molecular water channel. Am J Physiol 1993; 265: F463–76.

    PubMed  CAS  Google Scholar 

  35. Folkesson H, Matthay MA, Hasegawa H, Kheradmand F, Verkman AS. Transcellular water transport in lung alveolar epithelium through mercurial-sensitive water channels. Proc Natl Acad Sci 1994; 91: 4970–4.

    Article  PubMed  CAS  Google Scholar 

  36. King LS, Nielsen S, Agre P. Aquaporin I water channel protein in the lung. Ontogeny, steroid-induced expression and distribution in the rat. J Clin Invest 1996; 97: 2183–91.

    Article  PubMed  CAS  Google Scholar 

  37. Schnitzer J, Oh P. Aquaporin-1 in plasma membrane and caveolae provides mercury-sensitive water channels across lung endothelium. Am J Physiol 270 (Heart Circ Physiol) 1996; H416–22.

    PubMed  CAS  Google Scholar 

  38. Effros RM, Darin C, Krenz GS. Evidence for asymmetrical distribution of chip28 aquaporins in alveolar-capillary barrier. FASEB J 1995; 9: A279.

    Google Scholar 

  39. Effros RM, Mason GR, Sietsema K, Hukkanen J, Silverman P. Pulmonary epithelial sieving of small solutes in rat lungs. J Appl Physiol 1988; 65: 640–48.

    PubMed  CAS  Google Scholar 

  40. Rocker GM, Morgan AG, Shale DJ. Pulmonary oedema and renal failure. Nephrol Dial Transplant 1988; 3: 244–6.

    PubMed  CAS  Google Scholar 

  41. Kohen JA, Opsahl JA, Kjellstrand CM. Deceptive patterns of uremic pulmonary edema. Am J Kidney Dis 1986; 7: 456–60.

    PubMed  CAS  Google Scholar 

  42. Henkin RI, Maxwell MH, Murray JF. Uremic pneumonitis: a clinical, physiological study. Ann Intern Med 1962; 37: 1001–8.

    Google Scholar 

  43. Hopps HC, Wissler RW. Uremic pneumonitis. Am J Pathol 1955; 31: 261–73.

    PubMed  CAS  Google Scholar 

  44. Staub NC. Pulmonary edema. Physiol Rev 1974; 54: 678–811.

    Article  PubMed  CAS  Google Scholar 

  45. Mukau L, Latimer RG. Acute hemodialysis in the surgical intensive care unit. Am Surg 1988; 54: 548–52.

    PubMed  CAS  Google Scholar 

  46. Meduri GU. Noninvasive positive-pressure ventilation in patients with acute respiratory failure. Clin Chest Med 1996; 17: 513–53.

    Article  PubMed  CAS  Google Scholar 

  47. Hall JB, Schmidt GA, Wood LDH. Acute Hypoxemic Respiratory Failure. In: Textbook of Respiratory Medicine, 2nd Ed. Murray J, Nadel J (eds). WB Saunders Company; Philadelphia, PA. 1994.

    Google Scholar 

  48. Couser WG. Rapidly progressive glomerulonephritis: classification, pathogenic mechanisms, and therapy. Am J Kidney Dis 1988: 11; 449–64.

    PubMed  CAS  Google Scholar 

  49. Myers JM, Katzenstein AL. Wegener’s granulomatosis presenting with massive pulmonary hemorrhage and capillaritis. Am J Surg Pathol 1987; 11: 895–8.

    Article  PubMed  CAS  Google Scholar 

  50. ter Maaten JC, Franssen CFM, Gans ROB, Strack van Schijndel RJM, Hoorntje SJ. Respiratory failure in ANCA-associated vasculitis. Chest 1996; 110: 357–62.

    Article  PubMed  Google Scholar 

  51. Leatherman JW, Davies SF, Hoidal JR. Alveolar hemorrhage syndromes: diffuse microvascular lung hemorrhage in immune and idiopathic disorders. Medicine 1984; 63: 343–61.

    Article  PubMed  CAS  Google Scholar 

  52. Boyce NW, Holdsworth SR. Pulmonary manifestations of the clinical syndrome of acute glomerulonephritis and lung hemorrhage. Am J Kidney Dis 1986; 8: 31–36.

    PubMed  CAS  Google Scholar 

  53. Vajo Z, Parish JM. Endobronchial thrombolysis with streptokinase for airway obstruction due to blood clots. Mayo Clin Proceedings 1996; 71: 595–6.

    Article  CAS  Google Scholar 

  54. Conion PF, Walshe JJ, Daly C. Antiglomerular basement membrane disease: the long-term pulmonary outcome. Am J Kidney Dis 1994; 23: 794–6.

    Google Scholar 

  55. Miller KS, Wooten S, Sahn SA. Urinothorax: a cause of low pH transudative pleural effusions. Am J Med 1988; 85: 448–9.

    Article  PubMed  CAS  Google Scholar 

  56. Berger HW, Rammohan G, Neff MS, Buhain WJ. Uremic pleural effusion: a study in 14 patients on chronic dialysis. Ann Intern Med 1975; 82: 362–4.

    PubMed  CAS  Google Scholar 

  57. Maher JF. Uremic Pleuritis. Am J Kidney Dis 1987; 10: 19–22.

    PubMed  CAS  Google Scholar 

  58. Estenne M, Yernault JC, De Troyer A. Mechanism of relief of dyspnea after thoracentesis in patients with large pleural effusions. Am J Med 1983; 74: 813–9.

    Article  PubMed  CAS  Google Scholar 

  59. Light RW, Stansbury DW, Brown SE. The relationship between pleural pressures and changes in pulmonary function after therapeutic thoracentesis. Am Rev Respir Dis 1986; 133: 658–61.

    PubMed  CAS  Google Scholar 

  60. Goggin MJ, Joekes AM. Pulmonary gas exchange during peritoneal dialysis. Lancet 1971; 2: 247–8.

    CAS  Google Scholar 

  61. Cohn J, Balk RA, Bone RC. Dialysis-induced respiratory acidosis. Chest 1990; 98: 1285–6.

    Article  PubMed  CAS  Google Scholar 

  62. Fabris A, Biasoli S, Chiaramont C. Buffer metabolism in continuous ambulatory peritoneal dialysis: relationship with respiratory dynamics. Trans Am Soc Artif Intern Organs 1982; 28: 270–4.

    PubMed  CAS  Google Scholar 

  63. Light RW. Pleural Diseases, 3rd edition. William & Wilkins; Baltimore, MD, 1995.

    Google Scholar 

  64. Craddock PR, Fehr J, Brigham KL, Kronenberg RS, Jacob HS. Complement and leukocyte-mediated pulmonary dysfunction in hemodialysis. N Engl J Med 1977; 296: 769–74.

    Article  PubMed  CAS  Google Scholar 

  65. Hakim RM, Breillatt J, Lazarus JM, Port FK. Complement activation and hypersensitivy reactions to dialysis membranes. N Engl J Med 1984; 311: 878–92.

    Article  PubMed  CAS  Google Scholar 

  66. Cardoso M, Vinay P, Vinet B, Leveillee M, Prud’homme M, Tejedor A, Courteau M, Gougoux A, St-Louis G, Lapierre L, Peitte Y. Hypoxemia during hemodialysis: a critical review of the facts. Am J Kidney Dis 1988; 11: 281–97.

    PubMed  CAS  Google Scholar 

  67. Hakim RM, Wingard RL, Parker RA. Effect of the dialysis membrane in the treatment of patients with aucte renal failure. N Engl J Med 1994; 331: 1338–42.

    Article  PubMed  CAS  Google Scholar 

  68. Schiff H, Lang SM, Konig A, Strasser T, Haider MC, Held E. Biocompatible membranes in acute renal failure. A prospective case-controlled study. Lancet 1994; 344: 570–2.

    Article  Google Scholar 

  69. Bagshaw ONT, Anaes FRC, Hutchinson A. Continuous arteriovenous hemofiltration and respiratory function in multiple organ systems failure. Intensive Care Med 1992; 18: 334–8.

    Article  PubMed  CAS  Google Scholar 

  70. Bellomo R. Farmer M, Boyce N. Combined acute respiratory and renal failure: management by continuous hemodiafiltration. Resuscitation 1994; 28: 123–31.

    Article  PubMed  CAS  Google Scholar 

  71. DeBacker WA, Verpooten GA, Borgonion DJ, Vermeire PA, Lins RR, DeBroe ME. Hypoxemia during hemodialysis: effects of different membranes and dialysate compositions. Kidney Int 1983; 23: 738–43.

    Article  CAS  Google Scholar 

  72. Quebbman EJ, Maierhofer WJ, Piering WF. Mechanisms producing hypoxemia during hemodialysis. Crit Care Med 1984; 12: 359–63.

    Article  Google Scholar 

  73. Sherlock J, Ledwith J, Letteri J. Hypoventilation and hypoxemia during hemodialysis: reflex response to removal of CO2 across the dialyzer. Trans Am Soc Artif Intern Organs 1977; 13: 406–10.

    Article  Google Scholar 

  74. Romaldini H, Rodriguez-Roisin R, Lopez FA, Ziegler TW, Bencowitz, Wagner PD. The mechanisms of arterial hypoxemia during hemodialysis. Am Rev Respir Dis 1984; 129: 780–4.

    PubMed  CAS  Google Scholar 

  75. Prezant DJ. Effect of uremia and its treatment on pulmonary Function. Lung 1990; 168: 1–14.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Presberg, K.W., Effros, R.M. (1998). Pulmonary edema and other disorders in acute renal failure. In: Critical Care Nephrology. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5482-6_87

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5482-6_87

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6306-7

  • Online ISBN: 978-94-011-5482-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics