Skip to main content

The kidney in cardiac failure: today’s perspective

  • Chapter
Critical Care Nephrology

Abstract

An old German saying to describe the extremes of thoroughness compares this job symbolically (“etwas auf Herz and Nieren prüfen”) with a meticulous examination of the heart and the kidney together. In this way, the saying tacitly implies that the heart and the kidney are at the center of things — but only if in cooperation. As we now know, the heart, the kidney, and the blood vessel organs constitute the essential limbs of the cardiovascular perfusion system, the functions of which are regulated in an organized manner. To the physician scientist, cardiac failure therefore should make for an interesting abnormality: it challenges the compensatory capabilities of the kidney. Given that the latter receives the highest blood perfusion rate amongst the parenchymal organs of the body — at least under normal conditions — and that it is endowed with an unparalleled array of vascular control mechanisms, it is clear that cardiac failure will be a telling condition as regards the biological function of the kidney — and its many fine details. The present contribution will broadly outline the conceptual framework of renal function in heart failure as it evolved over the last 150 years (Fig. 1); it will then mainly focus on the many aspects of recent and ongoing progress that has been made. The way(s) in which the kidney appears to be — relatively — protected from ischemic acute tubular necrosis in cardiac failure will also be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Raine AEG, Margreiter R, Brunner FP, Ehrich JHH, Geerlings W, Landais P, Loirat C, Mallick NP, Selwwood NH, Tufveson G, Valderrabano F, Report on management of renal failure in Europe, XXII, 1991. Nephrol Dial Transplant (Suppl. 2 ): 7: 1–48.

    Google Scholar 

  2. Nizet A. Quantitative influence of nonhormonal blood factors on the control of sodium excretion by the isolated dog kidney. Kidney Int 1972; 1: 27–33.

    Article  PubMed  CAS  Google Scholar 

  3. Epstein FH, Post RS, McDowell M. The effect of an arteriovenous fistula on renal hemodynamics and electrolyte excretion. J Clin Invest 1953; 30: 233–41.

    Article  Google Scholar 

  4. Epstein FH. Renal excretion of sodium and the concept of a volume receptor. Yale J Biol Med 1956; 29: 282–96.

    PubMed  CAS  Google Scholar 

  5. Gaiter CH, Henry JP. Circulatory basis of fluid volume control. Physiol Rev 1963; 43: 423–81.

    Google Scholar 

  6. Murdaugh HV Jr, Sieker HO, Manfredi F. Effect of altered intrathoracic pressure on renal hemodynamics, electrolyte excretion and water clearance. J Clin Invest 1959; 38: 834–42.

    Article  PubMed  Google Scholar 

  7. Smith HW. Salt and water volume receptors: an exercise in physiologic apologetics. Am J Med 1957; 23: 623–52.

    Article  PubMed  CAS  Google Scholar 

  8. Epstein FH, Goodyer AVN, Lawrason FD, et al. Studies of the antidiuresis of quiet standing: the importance of changes in plasma volume and glomerular filtration rate. J Clin Invest 1951; 30: 63–9.

    Article  PubMed  CAS  Google Scholar 

  9. Galier OEI, Henry JP, Sieker HO, et al. The effects of negative pressure breathing on urine flow. J Clin Invest 1954; 33: 287–92.

    Article  Google Scholar 

  10. Hulet BH, Smith HH. Postural natriuresis and urine osmotic concentration in hydropenic subjects. Am J Med 1961; 30: 8–15.

    Article  PubMed  CAS  Google Scholar 

  11. Epstein M, Duncan DC, Fishman LM. Characterization of the natriuresis caused in normal man by immersion in water. Clin Sci 1972; 43: 276–87.

    Google Scholar 

  12. Gilmore JP, Daggett WM. Response of chronic cardiac denervated dog to acute volume expansion. Am J Physiol 1966; 210: 509–15.

    PubMed  CAS  Google Scholar 

  13. Schrier RW, Humphreys MH. Factors involved in the antinatriuretic effects of acute constriction of the thoracic and abdominal inferior vena cava. Circ Res 1971; 29: 479–88.

    Article  PubMed  CAS  Google Scholar 

  14. Sit SP, Morita H, Vatner SF. Responses of renal hemodynamics and function to acute volume expansion in the conscious dog. Circ Res 1984; 54: 185–93.

    Article  PubMed  CAS  Google Scholar 

  15. Larig F, Tschernko E, Schulze E, et al. Hepatorenal reflex regulating kidney function. Hepatol 1991; 14: 59–63.

    Google Scholar 

  16. Gaudin C, Braillon A, Poo JL, et al. Plasma catecholamines in patients with presinusoidal portal hypertension: comparison with cirrhotic patients and nonportal hypertensive subjects. Hepatol 1991; 13: 913–8.

    Article  CAS  Google Scholar 

  17. Quail AW, Woods RL, Korner PI. Cardiac and arterial baroreceptor influences in release of vasopressin and renin during hemorrhage. Am J Physiol 197; 252: H1120–6

    Google Scholar 

  18. Thunes MD, Peterson MG, Schmid PG. Stimulation of cardiac receptors with veratrum alkaloids inhibits ADH secretion. Am J Physiol 1980; 2; H784–8.

    Google Scholar 

  19. Andersson B. Central control of body fluid homeostasis. Proceedings of the Australian Physiological and Pharmacological Society 1974; 5: 139–48.

    CAS  Google Scholar 

  20. Zucker IH, Earle AM, Gilmore JP. The mechanism of adaptation of left atrial stretch receptors in dogs with chronic congestive heart failure. J Clin Invest 1977; 60: 323–31.

    Article  PubMed  CAS  Google Scholar 

  21. Hirsch AT, Dzau VJ, Creager MA. Baroreceptor function in congestive heart failure: effect on neuro-humoral activation and regional vascular insistance. Circulation 1987; 75: 36–47 (Supplement IV).

    Google Scholar 

  22. Cowley AW Jr, Liard JF, Skelton MM et al. Vasopressin-neural interactions in the control of cardiovascular function. In: Schrier RW (ed). Vasopressin. New York: Raven Press, 1985: 1–10.

    Google Scholar 

  23. Schmid PG, Guo GB, Axtelle TS, Abboud FM. Vasopressin facilitates baroreceptor inhibition of sympathetic vasomotor activity by more than one mechanism. In: Schrier RW, (editor). Vasopressin. New York: Raven Press, 1985: 11–20.

    Google Scholar 

  24. Goetz KL, Wang BC. Effect of peripheral cardiovascular receptors on the secretion of vasopressin. In: Schrier RW (ed). Vasopressin. New York: Raven Press, 1985: 29–38.

    Google Scholar 

  25. Renaud LP, Cunningham JT, Jarvis C, et al. Neural afferent connections to magnocellular vasopressin-secreting neurons. In: Jard S, Jamison R (eds). Vasopressin. Paris: John Libbey Eurotext, 1991: 223–30.

    Google Scholar 

  26. Barger AC, Liebowitz MR, Muldowney FP. The role of the kidney in the homeostatic adjustment of congestive heart failure. J Chron Diseases 1959; 9: 571–8.

    Article  CAS  Google Scholar 

  27. Con JH. Central nervous control of the volume of extracellular fluid. Physiol Bohemoslov 1955; 4: 1421.

    Google Scholar 

  28. Barjas I., Powers K, Wang P. Innervation of the renal cortical tubules: a quantitative study. Am J Physiol 1984; 247: F50–5.

    Google Scholar 

  29. DiBona GF, Sawin LL. Effect of renal nerve stimulation on NaCI and H» transport in Henle’s loop of the rat. Am J Physiol 1982; 243: F576–83.

    PubMed  CAS  Google Scholar 

  30. Prosnitz EH, DiBona GF. Effect of decreased renal sympathetic nerve activity on renal tubular sodium reabsorption. Am J Physiol 1978; 235: F557–62.

    PubMed  CAS  Google Scholar 

  31. Pelayo JC, Ziegler MG. Jose PA, Blantz RC. Renal denervation in the rat: analysis of glomerular and proximal tubular function. Am J Physiol 1983; 244: F70–6.

    PubMed  CAS  Google Scholar 

  32. Gazdar AF, Dammin GF. Neural degeneration and regeneration in human renal transplants. N Engl J Med 1970; 283: 222–6.

    Article  PubMed  CAS  Google Scholar 

  33. Bayliss J, Norell M, Canepa-Anson R, et al. Untreated heart failure: clinical and neuroendocrine effects of introducing diuretics. Br Heart J 1987; 57: 17–22.

    Article  PubMed  CAS  Google Scholar 

  34. DiBona GF, Rios LL. Renal nerves in compensatory renal responses to contralateral renal denervation. Am J Physiol 1980; 238: F26–33.

    PubMed  CAS  Google Scholar 

  35. Gross P, Ketteler M, Hausmann C, et al. Role of diuretics, hormonal derangements, and clinical setting of hyponatremia in medical patients. Klin Wochenschr 1988; 66: 662–9.

    Article  PubMed  CAS  Google Scholar 

  36. Gross P, Wehrle R, Wichmann A, Ketteler M, Hensen J. Suppression of arterial baroreceptors increases vasopressin in the hyponatremia of cirrhosis and heart failure. In: Jard S, Jamison R (eds). Vasopressin. Paris: John Libbey Eurotext, 1991: 521–30.

    Google Scholar 

  37. Gross P, Pehrisch H, Rascher W, Schömig A, Hackenthal E, Ritz E. Pathogenesis of clinical hyponatremia: observations of vasopressin and fluid intake in 100 hyponatremic medical patients. Eur J Clin Invest 1917; 17: 123–9.

    Article  Google Scholar 

  38. Gross P, Lang R, Ketteler M. et al. Natriuretic factors and lithium clearance in patients with the syndrome of inappropriate antidiuretic hormone Eur J Clin Invest 1989; 19: 11–9.

    PubMed  CAS  Google Scholar 

  39. Ley BI, Benessiano J, Henrion D, et al. Chronic blockade of AT 2-subtype receptors prevents the affect of angiotensin II on the rat vascular structure. J Clin Invest 1996; 98: 418–25.

    Article  Google Scholar 

  40. Riegger GAJ, Kahles HW, Elsner D, Kromer ER Effects of acetylsalicylic acid on renal function in patients with chronic heart failure. Am J Med 1991; 90: 571–5.

    PubMed  CAS  Google Scholar 

  41. Packer M, Lee WH, Kessler PD, Gottlieb SS, Bernstein JL, Kunin ML. Role of neurohumoral mechanisms in determining survival in patients with severe chronic heart failure. Circulation 1987; 75(suppl. IV): IV8092.

    Google Scholar 

  42. Gross P, Ketteler M, Hensen J, Schömig A, Rascher W. Die fortgeschrittene Hezzinsuffizienz: mögliche Rolle von Endothelin für die Niereninsuffizienz. Zeitschr Kardiol 1991; 80 (suppl 8): 99–100.

    Google Scholar 

  43. Bichet D, Schrier RW. Role of vasopressin in abnormal water excretion in edematous disorders. In: Schrier RW (ed). Vasopressin. New York: Raven Press, 1985: 525–34.

    Google Scholar 

  44. Levine T, Francis G, Goldsmith S, Simon A, Cohn J. Activity of the sympathetic nervous system and reninangiotensin system assessed by plasma hormone levels and their relation to hemodynamic abnormalities in congestive heart failure. Am J Cardiol 1982; 49: 165–966.

    Article  Google Scholar 

  45. Cohut J, Levine TB, Olivati MT, et al. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med 1984; 311: 819–23.

    Article  Google Scholar 

  46. Bichet D, Van Putten VJ, Schrier RW. Potential role of increased sympathetic activity in impaired sodium and water excretion in cirrhosis. N Engl J Med 1982; 307: 1552–7.

    Article  PubMed  CAS  Google Scholar 

  47. Lilly BS, Dzau VJ, Williams GH, Rydstedt L, Hollenberg NK. Hyponatremia in congestive heart failure: Implications for neurohumoral activation and responses to orthostasis. J Clin Endocrinol Metab 1984; 59: 924–30.

    Article  PubMed  CAS  Google Scholar 

  48. Guazzi M, Agostini P, Peregro B et al. Apparent paradox of neurohumoral axis inhibition after body fluid volume depletion in patients with chronic congestive heart failure and water retention. Br Heart J 1994; 72: 534–9.

    Article  PubMed  CAS  Google Scholar 

  49. Riegger GAJ. The effects of ACE inhibitors on exercise capacity in the treatment of congestive heart failure. J Cardiovasc Pharmacol 1990; 15 (Suppl 2): S41–6.

    Article  PubMed  Google Scholar 

  50. Sackner-Bernstein JD, Mancini DM. Rationale for treatment of patients with chronic heart failure with adrenergic blockade. JAMA 1995; 274: 1462–7.

    Article  PubMed  CAS  Google Scholar 

  51. Arnolda LF, Katopothis A, Phillips PA, Johnston CI. Vasopressin in cardiac heat failure. In: Jard S, Jamison R (eds). Vasopressin. Paris: John Libbey Eurotext. 1991: 565–74.

    Google Scholar 

  52. Osterziel KJ, Nagel F, Dietz R. Therapie mit ACEHemmern bei chronischer Herzinsuffizienz and eingeschränkter Nierenfunktion. Zeitsch Kardiol 1994; 83 (Suppl. 4): 81–7.

    Google Scholar 

  53. Badr KF, Ichikawa I. Prerenal failure: a deleterious shift from renal compensation to decompensation. N Engl J Med 1988; 319: 623–9.

    Article  PubMed  CAS  Google Scholar 

  54. Conger JD, Briner VA, Schrier RW. Acute renal failure: pathogenesis, diagnosis and management. In: Schrier RW (ed). Renal and electrolyte disorders. Boston: Little, Brown and Company, 1992: 495–537.

    Google Scholar 

  55. Yamamura Y, Ohnishi A, Orita Y, et al. Water diuresis induced by a nonpeptide vasopressin V2-receptor antagonist, OPC-31260. In: Saib T, Kurokawa K, Yoshida S (eds). Vasopressin. Amsterdam: Elsevier, 1995: 627–34.

    Google Scholar 

  56. Ichikawa I. New insights into the renin angiotensin system in disease and development. J Am Soc Nephrol 1995; 6: 127.

    Google Scholar 

  57. Wolf G, Stahl RA. Angiotensin-II-Wirkungen an der Niere: mehr als ein Vasokonstriktor. Deutsches Ärzteblatt 1996; 93: B1604–7.

    Google Scholar 

  58. Gross P, Renn C, Waldherr R, et al. Potential role(s) of endothelin in the regulation of normal and abnormal kidney function. Endothelium 1993; 1: 71–83.

    Article  CAS  Google Scholar 

  59. Nir A, Clavell AL, Heublein D, Aarhus LL, Burnett JC. Acute hypoxia and endogenous renal endothelin. J Am Soc Nephrol 1994; 4: 1920–4.

    PubMed  CAS  Google Scholar 

  60. Gauquelin G, Thibault G, Garcia R. Renal glomerular endothelin receptors in rats with high-output cardiac failure. Regulatory Peptides 1991; 3: 73–9.

    Article  Google Scholar 

  61. Wei CM, Lerman A, Rodeheffer RJ et al. Endothelin in human congestive cardiac failure. Circulation 1994; 89: 1580–6.

    Article  PubMed  CAS  Google Scholar 

  62. Chan DP, Clavel A, Keiser J, Burnett JC. Effects of renin-angiotensin system in mediating endothelin-induced renal vasoconstriction: therapeutic implications. J Hypertens 1994; 12 (Suppl 4): S43–9.

    Article  CAS  Google Scholar 

  63. Dusting GJ, Macdonald PS. Endogenous nitric oxide in cardiovascular disease and transplantation. Ann Med 1995; 27: 395–406.

    Article  PubMed  CAS  Google Scholar 

  64. Winlaw D, Smythe G, Keogh A, et al. Increased nitric oxide production in heart failure Lancet 1994; 344: 373–4.

    CAS  Google Scholar 

  65. Drexler H, Hayoz D, Munzel T, et al. Endothelial function in chronic congestive heart failure. Am J Cardiol 1992; 69: 1596–601.

    Article  PubMed  CAS  Google Scholar 

  66. Habib F, Dutka D, Crossman D, Oakley C, Cleland J. Enhanced basal nitric oxide production in heart failure: another failed counter-regulator vasodilator mechanism? Lancet 1994; 344: 371–3.

    Article  PubMed  CAS  Google Scholar 

  67. Drexler H, Lu W. Endothelial dysfunction of hindquarter resistance vessels in experimental heart failure. Am J Physiol 1992; 262: H1640–5.

    PubMed  CAS  Google Scholar 

  68. Treasure C, Vita J, Cox D, et al. Endothelium-dependant dilation of the coronary microvasculature is impaired in dilated cardiomyopathy. Circulation 1990; 81: 772–9.

    Article  PubMed  CAS  Google Scholar 

  69. O Murphy B, Miller V, Perella M, Burnett J. Increased production of nitric oxide in coronary arteries during congestive heart failure. J Clin Invest 1994; 93: 16571.

    Google Scholar 

  70. Hill-Kapturczak N, Kapturczak MH, Malinski T, Gross P. The potential roles of nitric oxide in normal and abnormal renal function. Endothelium 95; 3: 253–99.

    Google Scholar 

  71. Levine B, Kalman J, Mayer L, Fillit H, Packer M. Elevated circulating levels of tumour necrosis factor in severe chronic heart failure. N Engl J Med 1990; 323: 236–41.

    Article  PubMed  CAS  Google Scholar 

  72. Kat J, Kobayashi K, Etoh T, et al. Plasma adreno-medullin concentration in patients with heart failure. J Clin Endocrinol Metab 1996; 81: 180–3.

    Article  Google Scholar 

  73. Kobayashi K, Kitamura K, Etoh T, et al. Increased plasma adrenomedullin levels in chronic congestive heart failure. Am Heart J 1996; 131: 994–8.

    Article  PubMed  CAS  Google Scholar 

  74. Jougasaki M, Rodeheffer RJ, Redfield MM, et al. Cardiac secretion of adreno-medullin in human heart failure. J Clin Invest 1996; 97: 2370–6.

    Article  PubMed  CAS  Google Scholar 

  75. Jougasaki M, Wei C-M, McKinley LJ, Burnett JC. Elevation of circulating and ventricular adrenomedullin in human congestive heart failure. Circulation 1995; 92: 286–9.

    Article  PubMed  CAS  Google Scholar 

  76. Sato K, Hirata Y, Imai T, Iwashina M, Marumo F. Characterization of immuno-reactive adrenomedullin in human plasma and urine. Life Sci 1995; 57: 18994.

    Article  Google Scholar 

  77. Ichiki Y, Kitamura K, Kangawa K, et al. Distribution and characterization of immunoreactive adrenomedullin in human tissue and plasma. FEBS lett 1994; 314: 288–90.

    Google Scholar 

  78. Stevens fL, Burnett JC, Kinoshita M, Matsuda Y, Redfield MM. A functional role for endogenous atrial natriuretic peptide in a canine model of early left ventricular dysfunction. J Clin Invest 1995; 95: 1 1018.

    Google Scholar 

  79. Francis GS, Benedict C, Johnstone DE, et al. Comparison of neuroendocrine activation in patients with left ventricular dysfunction with and without congestive heart failure: a substudy of the studies of left ventricular dysfunction. Circulation 1990; 82: 1724–9.

    Article  PubMed  CAS  Google Scholar 

  80. Mukoyama M, Nakao It, Hosoda K, et al. Brain natriuretic peptide as a novel cardiac hormone in humans. J Clin Invest 1991; 87: 1402–12.

    Article  PubMed  CAS  Google Scholar 

  81. Brandt R, Wright RS, Redfield MM, Burnett JC. Atrial natriuretic peptide in heart failure. J Am Coll Cardiol 1993; 22 (suppl A): 86A–92A.

    Article  PubMed  CAS  Google Scholar 

  82. Brandt RR, Redfield MM, Aarhus LL, Lewicki JA, Burnett JC Jr. Clearance receptor-mediated control of an atrial natriuretic factor in experimental congestive heart failure. Am J Physiol 1994; 266: R936–43.

    PubMed  CAS  Google Scholar 

  83. Firth BG, Perna R, Bellomo JF, Toto RD. Cardiorenal effects of atrial natriuretic factor administration in congestive heart failure: natriuresis and diuresis without hemodynamic alterations. Am J Med Sci 1989; 27: 203–8.

    Article  Google Scholar 

  84. Münzel T, Drexler H, Holtz J, Kurtz S, Just H. Mechanisms involved in the response to prolonged infusion of atrial natriuretic factor in patients with chronic heart failure. Circulation 1991; 83: 191–201.

    Article  PubMed  Google Scholar 

  85. Northridge DB, Jardine AG, Findlay IN, et al. Inhibition of the metabolism of atrial natriuretic factor causes diuresis and natriuresis in chronic heart failure. Am J Hypertens 1990; 3: 682–7.

    Article  PubMed  CAS  Google Scholar 

  86. Münzel T, Kunz S, Holtz J, et al. Neurohumoral inhibition and hemodynamic unloading during prolonged inhibition of ANF degradation in patients with severe chronic heart failure. Circulation 1992; 86: 1089–98.

    Article  PubMed  Google Scholar 

  87. Wei MC, Kao PC, Lin JT, et al. Circulating ß-atrial natriuretic factor in congestive heart failure in humans. Circulation 1993; 88: 1016–20.

    Article  PubMed  CAS  Google Scholar 

  88. Riegger GAJ, Elsner D, Forssmann W-G, Kromer EP. Effects of NP(95–126) in dogs before and after induction of heart failure. Am J Physiol 1990; 259: H1643–8.

    PubMed  CAS  Google Scholar 

  89. Elsner D, Muders F, Müntzel A, et al. Efficacy of prolonged infusion of urodilatin [ANP (95–126)] in patients with congestive heart failure. Am Heart J 1995; 129: 766–73.

    Article  PubMed  CAS  Google Scholar 

  90. Liad JF. Acute hemodynamic effects of antidiuretic agonists. In: Cowley AW, Liard J-F, Ausiello DA (eds). Vasopressin: cellular and interative functions. New York: Raven Press, 1988: 461–6.

    Google Scholar 

  91. Bichet DG, Arthus M-F, Lonergan M. Cellular defect in hereditary nephrogenic diabetes insipidus. In: Jard S, Jamison R, (editors). Vasopressin. Paris: John Libbey Eurotext, 1991: 557–64.

    Google Scholar 

  92. Nicod P, Biollaz J, Waeber B, et al. Hormonal, global and regional hernodynamic responses to a vascular antagonist of vasopressin in patients with congestive heart failure with and without hyponatremia. Br Heart J 1996; 56: 433–9.

    Article  Google Scholar 

  93. Arnolda L, Mc Grath BP, Cocks M, Johnston CI. Vasoconstrictor role for vasopressin in experimental heart failure in the rabbit. J Clin Invest 1986; 78: 674–9.

    Article  PubMed  CAS  Google Scholar 

  94. Phillips PA, Burrell LM, Gow CB, et al. Vasopressin antagonism: physiological and pharmacological roles. In: Saito T, Kurokawa K, Yoshida S (eds). Vasopressin. Amsterdam: Elsevier, 1995: 643–58.

    Google Scholar 

  95. Elsner D, Kromer EP, Riegger AJG. Hemodynamic, hormonal and renal effects of the prostacyclin analogue iloprost in conscious dogs with and without heart failure. J Cardiovasc Pharmacol 1990; 16: 601–8.

    Article  PubMed  CAS  Google Scholar 

  96. Elsner D, Müntzel A, Kromer EP, Riegger GAJ. Prostaglandin I, versus prostaglandin E, in dogs with and without low cardiac output. Am J Hypertens 1992; 5: 175–9.

    Article  PubMed  CAS  Google Scholar 

  97. Townsend JN, Doran J, Lote CJ, Davies MK. Peripheral hemodynamic effects of inhibition of prostaglandin synthesis in congestive heart failure and interactions with captopril. Br Heart J 1995; 73: 434–41.

    Article  Google Scholar 

  98. Evans M A, Burnett JC, Redfield MM. Effect of low dose aspirin on cardiorenal function and acute hemodynamic response to enalaprilat in a canine model of severe heart failure. J Am Coll Cardiol 1995; 25: 1445–50.

    Article  PubMed  CAS  Google Scholar 

  99. Schunkert H, Tang SS, Litwin SE, et al. Regulation of intrarenal and circulating renin-angiotensin systems in severe heart failure in the rat. Cardiovasc Res 1993; 27: 731–5.

    Article  PubMed  CAS  Google Scholar 

  100. Bruckschlegel G, Holmer SR, Jandelait K, et al. Blockade of the renin-angiotensin system in cardiac pressure-overload hypertrophy in rats. Hypertension 1995; 25: 250–9.

    Article  PubMed  CAS  Google Scholar 

  101. Denton MD, Chertow GM, Brady HR. “Renal-dose” dopamine for the treatment of acute renal failure: scientific rationale, experimental studies and clinical trials. Kidney Int 1996; 49: 4–14.

    Article  Google Scholar 

  102. Levinsky NG, Lieberthal W, Vasilevsky ML. Role of the kallikrein-kinin-system in volume homeostasis. In: Brenner BM, Stein JH (eds). New York: Churchill Livingstone, 1987: 163–83.

    Google Scholar 

  103. Kiowski W, Sütsch G, Hunriker P, et al. Evidence for endothelin-l-mediated vasoconstriction in severe chronic heart failure. Lancet 1995; 346: 732–6.

    Article  PubMed  CAS  Google Scholar 

  104. Iwasaki S, Homma T, Matsuda Y, Kon V. Endothelin receptor subtype B mediates autoinduction of endothelin-1 in rat mesangial cells. J Biol Chem 1995; 270: 1–7.

    Article  Google Scholar 

  105. Huang M-H, Friend DS, Sunday ME, et al. An intrinsic adrenergic system in mammalian heart. J Clin Invest 1996; 98: 1298–1303.

    Article  PubMed  CAS  Google Scholar 

  106. Reinhardt HW, Corea M, Boemke V, et al. Resetting of 24-h sodium and water balance during 4 days of servo-controlled reduction of renal perfusion pressure. Am J Physiol 1994; 266: H650–7.

    PubMed  CAS  Google Scholar 

  107. Norling LL, Thornhill BA, Chevalier RL. Abnormal glomerular response to atrial natriuretic peptide in rats with aortocaval fistulas. J A S N 1996; 7: 1038–44.

    PubMed  CAS  Google Scholar 

  108. Jin H, Li B, Cunningham B, et al. Novel analog of atrial natriuretic peptide selective for receptor-A produces increased diuresis and natriuresis in rats. J Clin Invest 1996; 98: 969–76.

    Article  PubMed  CAS  Google Scholar 

  109. Varo DL, Brater DC, Rudy DW, Swan SK. Dopamine does not enhance furosemide-induced natriuresis in patients with congestive heart failure. J A S N 1996; 7: 1032–7.

    Google Scholar 

  110. Williams RS. Boosting cardiac contractility with genes. N Engl J Med 1995; 332: 817–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gross, P., Schadt, M., Passauer, J., Werner, D., Büssemaker, E. (1998). The kidney in cardiac failure: today’s perspective. In: Critical Care Nephrology. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5482-6_84

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5482-6_84

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6306-7

  • Online ISBN: 978-94-011-5482-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics