Skip to main content

Pathophysiology of metabolic acid-base disturbances in patients with critical illness

  • Chapter

Abstract

Because of the impact of hydrogen ion concentration ([H+]) on biological function [1], acid-base balance is one of the fundamental homeostatic needs of all organisms. Changes in [H+] affect the rate constants of many enzymes as well as cell cycle, cell proliferation and signal transduction. Intracellular concentrations of calcium ion and cyclic adenosine mono-phosphate (cAMP) are also affected by the [H] [1]. This chapter will discuss the mechanisms involved in clinically important disturbances of acid-base balance, with a particular emphasis on the physical-chemical approach to acid-base presented in the previous chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ganapathy V, Leibach FH. Protons and regulation of biological functions. Kidney Int 1991; 40: S4–10.

    Google Scholar 

  2. Stewart PA. How to understand acid-base. A quantitative acid-base primer for biology and medicine. New York: Elsevier North Holland, 1981.

    Google Scholar 

  3. Kaehny WD, Gabow PA. Pathogenesis and management of metabolic acidosis and alkalosis. In: Schrier RW (ed). Renal and Electrolyte Disorders. 2nd Ed. Boston: Little, Brown and Company, 1980: 115–57.

    Google Scholar 

  4. Cogan MG, Rector FC Jr. Acid-base disorders. In: Brenner BM, Rector FC Jr. (eds). The Kidney. 3rd Ed. Philadelphia: Saunders, 1986: 487–8.

    Google Scholar 

  5. Emmett M, Narins RG. Clinical use of the anion gap. Medicine 1977; 56: 38–54.

    PubMed  CAS  Google Scholar 

  6. Gilfix BM, Bique M, Magder SA. A physiological approach to the analysis of acid-base balance in the clinical setting. J Crit Care 1993; 8: 187–97.

    Article  PubMed  CAS  Google Scholar 

  7. Jones NL. A quantitative physiochemical approach to acid-base physiology. Clin Biochem 1990; 23: 189–95.

    Article  PubMed  CAS  Google Scholar 

  8. Fend V, Rossing TH. Acid-base disorders in critical care medicine. Ann Rev Med 1989; 40: 17–29.

    Article  Google Scholar 

  9. Kellum JA, Kramer DJ, Pinsky MR. Strong ion gap: a methodology for exploring unexplained anions. J Crit Care 1995; 10: 51–5.

    Article  PubMed  CAS  Google Scholar 

  10. Rossing TH, Maffeo N, Fend V. Acid-base effects of altering plasma protein concentration in human blood in vitro. J Appl Physiol 1986; 61: 2260–5.

    PubMed  CAS  Google Scholar 

  11. Forster HV, Murphy CL, Brice AG. Plasma [H+] regulation and whole blood [CO2] in exercising ponies. J Appl Physiol 1990; 68: 309–15.

    PubMed  CAS  Google Scholar 

  12. Anderson JW, Jennings DB. Osmolality, NaCI dietary intake, and regulation of ventilation by CO2. Am J Physiol 1990; 68: 309–15.

    Google Scholar 

  13. Forster HV, Murphy CL, Brice AG. In vivo regulation of plasma [Ht] in ponies during acute changes in PCO2. J Appl Physiol 1990; 68: 316–21.

    PubMed  CAS  Google Scholar 

  14. Kowalchuk JM, Heigenhauser GJF, Lindinger MI. Role of lungs and inactive muscle in acid-base control after maximal exercise. J Appl Physiol 1981; 65: 2090–96.

    Google Scholar 

  15. Kowalchuk JM, Heigenhauser GJF, Lindinger MI. Factors influencing hydrogen ion concentration in muscle after intense exercise. J Appl Physiol 1981; 65: 2080–9.

    Google Scholar 

  16. Anderson JW, Jennings DB. H+ homeostasis, osmolality and body temperature during controlled NaC1 and H2O intake. Am J Physiol 1986; 255: R97–105.

    Google Scholar 

  17. Siggaard-Andersen O. The acid-base status of the blood. 2nd Ed. Baltmore, MD: Williams and Wilkins, 1964.

    Google Scholar 

  18. Mizock BA, Falk JL. Lactic acidosis in critical illness. Crit Care Med 1992; 20: 80–93.

    Article  PubMed  CAS  Google Scholar 

  19. Gutierrez G, Wulf ME. Lactic acidosis in sepsis: a commentary. Intensive Care Med 1996; 22: 6–16.

    Article  PubMed  CAS  Google Scholar 

  20. Cohen RD, Woods HF. Lactic acidosis revisited. Diabetes 1983; 32: 181–91.

    PubMed  CAS  Google Scholar 

  21. Luft D, Deichsel G, Schmulling R, Stein W, Eggstein M. Definition of clinically relevant lactic acidosis in patients with internal diseases. J Clin Pathol 1983; 80: 484–9.

    CAS  Google Scholar 

  22. Hochachka PW, Mommsen TR. Protons and anaerobiosis. Science 1983; 219: 1391–7.

    Article  PubMed  CAS  Google Scholar 

  23. Vary TC, Siegel JH, Nakatani T, Sato T, Aoyama H. Effect of sepsis on activity of pyruvate dehydrogenase complex in skeletal muscle and liver. Am J Physiol (Endocrinol Metab 13 ) 1986; 250: E634–40.

    Google Scholar 

  24. Stacpoole PW, Wright EC, Baumgartner TG, Bersin RM, Buchalter S, Curry SH, Duncan C, Harman EM, Henderson GN, Jenkinson S, Lachin JM, Lorenz A, Schneider SH, Siegel JH, Summer WR, Thompson D, Wolfe CL, Zorovich B. Natural history and course of acquired lactic acidosis in adults. Am J Med 1994; 97: 47–54.

    Article  PubMed  CAS  Google Scholar 

  25. Fink MP. Does tissue acidosis in sepsis indicate tissue hypoperfusion? Intensive Care Med 1996; 22: 1144–6.

    Article  PubMed  CAS  Google Scholar 

  26. McKenzie R, Fried MW, Sallie R, Conjeevaram H, Di Bisceglie AM, Park Y, Savarese B, Kleiner D, Tsokos M, Luciano C. Hepatic failure and lactic acidosis due to fialuridine (FIAU), an investigational nucleoside analogue for chronic hepatitis B. N Engl J Med 1995; 333: 1446–8.

    Article  Google Scholar 

  27. Lalau JD, Lacroix C, De Cagny B, Fournier A. Metf. Nephrology, Dialysis, Transplantation 1994; 9: 126–9.

    Google Scholar 

  28. Wiholm KE, Myrhed M. Metformin-associated lactic acidosis in Sweden. Eur J Clin Pharmacol 1993; 44: 589–91.

    Article  PubMed  CAS  Google Scholar 

  29. Revesz T, Obeid K, Mpofu C. Severe lactic acidosis and renal involvement in a patient with relapsed Burkitt’s lymphoma. Pediatr Hematol Oncol 1995; 12: 283–8.

    Article  PubMed  CAS  Google Scholar 

  30. Oriot D, Wood C, Gottesman R, Huault G. Severe lactic acidosis related to acute thiamine deficiency. JPEN 1991; 15: 105–9.

    Article  CAS  Google Scholar 

  31. Ernest D, Herkes RG, Raper RF. Alterations in anion gap following cardiopulmonary bypass. Crit Care Med 1992; 20: 52–6.

    Article  PubMed  CAS  Google Scholar 

  32. Gabow PA, Kaehny WD, Fennessey P, Goodman SI, Gross PA, Schrier RW. Diagnostic importance of an increased serium anion gap. N Engl J Med 1980; 303: 854–8.

    Article  PubMed  CAS  Google Scholar 

  33. Opie LH. Effect of extracellular pH on function and metabolism of isolated perfused rat heart. Am J Physiol 1965; 209: 1075–80.

    PubMed  CAS  Google Scholar 

  34. Pannier JL, Leusen I. Contraction characteristics of papillary muscle during changes in acid-base composition of the bathing-fluid. Arch Biochem Biophys 1968; 76: 624–34.

    CAS  Google Scholar 

  35. Ng MLK, Levy MN, Zieske HA. Effects of changes of pH and of carbon dioxide tension on left ventricular performance. Am J Physiol 1967; 213: 115–20.

    PubMed  CAS  Google Scholar 

  36. Steenbergen C, Deleeuw G, Rich T, Williamson JR. Effects of acidosis and ischemia on contractility and intracellular pH or rat heart. Circ Res 1977; 41: 849–58.

    Article  PubMed  CAS  Google Scholar 

  37. Blackshear PJ, Fang LST, Axelrod L. Treatment of severe lactic acidosis with dichloracetate. Diabetes Care 1982; 5: 391–4.

    Article  PubMed  CAS  Google Scholar 

  38. Stacpoole PW, Harman EM, Curry SH, Baumgartner TG, Misbin RI. Treatment of lactic acidosis with dichloracetate. N Engl J Med 1983; 309: 390–6.

    Article  PubMed  CAS  Google Scholar 

  39. Stacpoole PW, Wright EC, Baumgartner TG, Bersin RM, Buchalter S, Curry SH, Duncan CA, Harman EM, Henderson GN, Jenkinson S, Lachin JM, Lorenz A, Schneider S, Siegel JH, Summer WR, Thompason D, Wolfe CL, Zorovich B. A controlled clinical trial of dichloroacetate for treatment of lactic acidosis in adults. N Engl J Med 1992; 327: 1564–9.

    Article  PubMed  CAS  Google Scholar 

  40. Kitabchi AE, Wall BM. Diabetic ketoacidosis. Med Clin North Am 1995; 79: 9–37.

    PubMed  CAS  Google Scholar 

  41. Alberti KGMM. Diabetic emergencies. Br Med J 1989; 45: 242–63.

    CAS  Google Scholar 

  42. Henry SB. Clinical Diagnosis and management by laboratory methods. 18th Ed. Montreal: W.B. Saunders, 1991.

    Google Scholar 

  43. Adrogué HJ, Wilson H, Boyd AE, Wadi N, Suki WN, Eknoyan G. Plasma acid-base patterns in diabetic ketoacidosis. N Engl J Med 1982; 307: 1603–10.

    Article  PubMed  Google Scholar 

  44. Adrogué HJ, Eknoyan G, Suki WK. Diabetic ketoacidosis: role of the kidney in the acid-base homeostasis re-evaluated. Kidney Int 1984; 25: 591–8.

    Article  PubMed  Google Scholar 

  45. Fend V. Acid-base balance in cerebral fluids. In: Anonymous Handbook of Physiology - The Respiratory System I I. 1997.

    Google Scholar 

  46. Adrogué HJ, Lederer ED, Suki WN, Eknoyan G. Determinants of plasma potassium levels in diabetic ketoacidosis. Medicine 1986; 65: 163–72.

    PubMed  Google Scholar 

  47. Good DG. Regulation of bicarbonate and ammonium absorption in the thick ascending limb of the rat. Kidney Int 1991; 40: S36–42.

    Google Scholar 

  48. Adrogué H7, Barrero J, Eknoyan G. Salutary effects of modest fluid replacement in the treatment of adults with diabetic ketoacidosis. JAMA 1989; 262: 2108–13.

    Article  PubMed  Google Scholar 

  49. Morris LR, Murphy MB, Kitabchi AB. Bicarbonate therapy in severe diabetic ketoacidosis. Ann Int Med 1986; 105: 836–40.

    PubMed  CAS  Google Scholar 

  50. Hale Pi, Crase J, Nattrass M. Metabolic effects of bicarbonate in the treatment of diabetic ketoacidosis. Br Med J 1984; 289: 1035–8.

    Article  CAS  Google Scholar 

  51. Vukmir RB, Bircher NG, Radovsky A, Safar P. Sodium bicarbonate may improve outcome in dogs with brief or prolonged cardiac arrest. Crit Care Med 1995; 23: 515–22.

    Article  Google Scholar 

  52. Widmer B, Gerhardt RE, Harrington JT, Cohen JJ. Serum electrolyte and acid base composition. The influence of graded degrees of chronic renal failure. Arch Intern Med 1979; 139: 1099–102.

    Article  PubMed  CAS  Google Scholar 

  53. Warnock DG. Uremic acidosis. Kidney Int 1988; 34: 278–87.

    Article  PubMed  CAS  Google Scholar 

  54. Alpern RJ, Warnock DG, Rector FR Jr. Renal acidification mechanisms. In: Brenner BM, Rector FC Jr. (eds). The Kidney. Philadelphia: Saunders, 1986: 206–49.

    Google Scholar 

  55. Goodman AD, Lemann Jr, Lennon EJ, Relman AS. Production, excretion, and net balance of fixed acid in patients with renal acidosis. J Clin Invest 1965; 44: 493–506.

    Article  Google Scholar 

  56. Relman AS. The acidosis of renal disease. Am J Med 1968; 44: 706–13.

    Article  PubMed  CAS  Google Scholar 

  57. Stone DK, Xie X. Proton translocating ATPase: Issues in structure and function. Kidney Int 1988; 33: 767–74.

    Article  PubMed  CAS  Google Scholar 

  58. Russell JM. Role of chloride transport in regulation of intracellular pH. Nature 1976; 4: 73–4.

    Article  Google Scholar 

  59. Reusch HP, Mann JFE, Mihatch MJ, Siffert W, Luft FC. Light-chain-induced renal tubular acidosis: effect of sodium bicarbonate on sodium-proton exchange. Nephrol Dial Transplant 1995; 10: 39–46.

    Article  PubMed  CAS  Google Scholar 

  60. Smulders YM, Jos Frissen PH, Slaats EH, Silberbusch J. Renal tubular acidosis. Pathophysiology and diagnosis. Arch Intern Med 1996; 156: 1629–36.

    Article  PubMed  CAS  Google Scholar 

  61. Rothstein M, Obialo C, Hruska KA. Renal tubular acidosis. Endocrinol Metab Clin North Am 1990; 19: 869–87.

    PubMed  CAS  Google Scholar 

  62. Borensztein P, Leviel F. Froissart M, Houillier P, Poggioli J, Marty E, Bichara M, Paillard M. Mechanisms of H+ /HCO, transport in the medullary thick ascending limb of rat kidney. Kidney International 1991; 40: S43–6.

    Article  Google Scholar 

  63. Capasso G, Unwin R, Giebisch G. Role of the loop of henle in urinary acidification. Kidney Int 1991; 40: S33–5.

    Google Scholar 

  64. Yip L, Dart RC, Gabow PA. Concepts and controversies in salicylate toxicity. Emerg Med North Am 1994; 12: 351–64.

    CAS  Google Scholar 

  65. Glaser D. Utility of the serum osmol gap in the diagnosis of methanol or ethylene glycol ingestion. Ann Emerg Med 1996; 27: 343–6.

    Article  PubMed  CAS  Google Scholar 

  66. Kruse JA. Methanol poisoning. Intensive Care Med 1992; 18: 391–7.

    Article  PubMed  CAS  Google Scholar 

  67. Gonda A, Gault H, Churchill D, Hollomby D. Hemodialysis for methanol intoxication. Am J Med 1978; 64: 749–58.

    Article  PubMed  CAS  Google Scholar 

  68. Frenia ML, Schauben JL. Methanol inhalation toxicity. Ann Emerg Med 1993; 22: 1919–23.

    Article  PubMed  CAS  Google Scholar 

  69. Gabow PA. Vignette in clinical pathophysiology: Ethylene glycol intoxication. Am J Kidney Dis 1988; XI: 277–9.

    Google Scholar 

  70. Leon M, Graeber C. Absence of high anion gap metabolic acidosis in severe ethylene glycol poisoning: a potential ffect of simultaneous lithium carbonate ingestion. Am J Kidney Dis 1994; 23: 313–6.

    PubMed  CAS  Google Scholar 

  71. Fischman CM, Oster JR. Toxic effects of high anion gap metabolic acidosis. JAMA 1979; 241: 1713–5.

    Article  PubMed  CAS  Google Scholar 

  72. Blum JE, Coe FL. Metabolic acidosis after sulfur ingestion. N Engl J Med 1977; 297: 869

    Article  PubMed  CAS  Google Scholar 

  73. Wang F, Butler T, Rabbani GH. The acidosis of cholera: contributions of hyperproteinemia, lactic acidemia and hyperphosphatemia to an increased serum anion gap. N Engl J Med 1986; 315: 1591–5.

    Article  PubMed  CAS  Google Scholar 

  74. Kellum JA, Bellomo R, Kramer DJ, Pinksy MR. Hepatic anion flux during acute endotoxemia. J Appl Physiol 1995; 78: 2212–7.

    PubMed  CAS  Google Scholar 

  75. Figge J, Mydosh T, Fend V. Serum proteins and acid-base equilibria: a follow-up. J Lab Clin Med 1992; 120: 713–9.

    PubMed  CAS  Google Scholar 

  76. Figge J, Rossing TH, Fencl V. The role of serum proteins in acid-base equilibria. J Lab Clin Med 1991; 117: 453–67.

    PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Magder, S. (1998). Pathophysiology of metabolic acid-base disturbances in patients with critical illness. In: Critical Care Nephrology. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5482-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5482-6_24

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6306-7

  • Online ISBN: 978-94-011-5482-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics