Skip to main content

Advances in Numerical Modeling of Astrophysical and Space Plasmas

Dedicated to the memories of Hannes Alfvén and Oscar Buneman; Founders of the Subject

  • Conference paper
Advanced Topics on Astrophysical and Space Plasmas
  • 117 Accesses

Abstract

Plasma science is rich in distinguishable scales ranging from the atomic to the galactic to the meta-galactic, i.e., the mesoscale. Thus plasma science has an important contribution to make in understanding the connection between microscopic and macroscopic phenomena. Plasma is a system composed of a large number of particles which interact primarily, but not exclusively, through the electromagnetic field. The problem of understanding the linkages and couplings in multiscale processes is a frontier problem of modern science involving fields as diverse as plasma phenomena in the laboratory to galactic dynamics.

Unlike the first three states of matter, plasma, often called the fourth state of matter, involves the mesoscale and its interdisciplinary founding have drawn upon various subfields of physics including engineering, astronomy, and chemistry. Basic plasma research is now posed to provide, with major developments in instrumentation and largescale computational resources, fundamental insights into the properties of matter on scales ranging from the atomic to the galactic. In all cases, these are treated as mesoscale systems. Thus, basic plasma research, when applied to the study of astrophysical and space plasmas, recognizes that the behavior of the near-earth plasma environment may depend to some extent on the behavior of the stellar plasma, that may in turn be governed by galactic plasmas. However, unlike laboratory plasmas, astrophysical plasmas will forever be inaccessible to in situ observation. The inability to test concepts and theories of large-scale plasmas leaves only virtual testing as a means to understand the universe. Advances in in computer technology and the capability of performing physics first principles, fully three-dimensional, particle-in-cell simulations, are making virtual testing a viable alternative to verify our predictions about the far universe.

The first part of this paper explores the dynamical and fluid properties of the plasma state, plasma kinetics, and the radiation emitted from plasmas. The second part of this paper outlines the formulation for the particle-in-cell simulation of astrophysical plasmas and advances in simulational techniques and algorithms, as-well-as the advances that may be expected as the computational resource grows to petaflop speed/memory capabilities.

Scientific Advisor, Office of Research and Development, United States Department of Energy, Washington D.C.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alfvén, H., Carlqvist, P.: 1978, Astrophys. Space Sci.Vol. no. 55, 484

    Article  ADS  Google Scholar 

  • Alfvén, H., Herlofson, N.: 1950, Phys. Rev.Vol. no. 78, 616

    Article  ADS  Google Scholar 

  • Alfvén, H. and Fälthammar, C.-G.: 1963, Cosmical Electrodynamics, Oxford University Press, New York

    MATH  Google Scholar 

  • Akasofu, A.-I.: 1981, “Energy coupling between the solar wind and the magnetosphere”, Space Sci.Rev.Vol. no. 28, p.21

    Article  Google Scholar 

  • Bennett, W. H.: 1934, “Magnetically self-focusing streams”, Phys. Rev.Vol. no. 45, 890

    Article  ADS  Google Scholar 

  • Birdsall, C. K., Langdon, A. B.: 1985, Plasma Physics via Computer Simulation, McGraw-Hill, New York

    Google Scholar 

  • Biskamp, D.: 1997, “Magnetic Reconnection in Plasmas”, Astrophys. Space Sci.,This issue

    Google Scholar 

  • Bogdankevich, L. S., Rukhadze, A. A.: 1971, “Sov. Phys. Usp”, Soy. Phys. Usp.Vol. no. 14, 163

    Article  ADS  Google Scholar 

  • Bostick, W. H.: 1986, “What laboratory produced plasma structures can contribute to the understanding of cosmic structures both large and small”, IEEE Trans. Plasma Sci.Vol. no. 14, 703

    Article  ADS  Google Scholar 

  • Brackbill, J.: 1987, “Fundamentals of Numerical Magnetohydrodynamics, International School for Space Simulation, La londe les Maures, France, 1987”, Los Alamos National Laboratory Report,LA-UR-87–2052.

    Google Scholar 

  • Buneman, O.: 1976, “The advance from 2D electrostatic to 3D electromagnetic particle simulations”, Computer Phys. Comm.Vol. no.12, pp. 21–31

    Article  ADS  Google Scholar 

  • Buneman, O., Barnes, C. W., Green, J. C., Nielsen, D. E.: 1980, “Principles and capabilities of 3D, EM particle simulations”, J. Comp. Phys.Vol. no.38, 1

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Buneman, O.: 1986, “Multidimensional particle codes: their capabilities and limitations for modeling space and laboratory plasma”, IEEE Trans. Plasma Sci.Vol.14, 661

    Article  ADS  Google Scholar 

  • Carlqvist, P.: 1988, “Cosmic electric currents and the generalized Bennett Relation”, Astrophys. Space Sci.Vol. no. 144, 73

    ADS  Google Scholar 

  • Chen, F. F.: 1984, Introduction to Plasma Physics and Controlled Fusion, Plenum Press, New York

    Google Scholar 

  • Dawson, J. M., Decyk, V., Sydora, R., Liewer, P.: 1993, “High-performance computing and plasma physics”, Phys. Today., March

    Google Scholar 

  • Eastman, T.: 1990, “Transition regions in solar system and astrophysical plasmas”, IEEE Trans. Plasma Sci.Vol. no. 18, p18.

    Article  ADS  Google Scholar 

  • Frank, I., Ginsburg, V.: 1945, “Radiation of a uniformly moving electron due it its transition from one medium into another”, Journal of Phys.Vol. no. IX, pp. 353–362

    Google Scholar 

  • Gouveia Dal Pino, E. M., Opher, R.: 1989, “The origin of filaments in extended radio sources”, Astrophys. J.Vol. no. 342, pp. 686–699

    Article  ADS  Google Scholar 

  • Lindberg, L.: 1970, Astrophys. Space Sci.Vol. no. 55, 203

    Article  ADS  Google Scholar 

  • Hammer, D. A., Rostocker, N.: 1970, Phys. Fluids Vol. no. 13, 1831

    Google Scholar 

  • Happek, U., Sievers, A. J., Blum, E. B.: 1992, “Observation of coherent transition radiation”, Phys. Rev. Lett

    Google Scholar 

  • Hockney, R. W., Eastwood, J. W.: 1981, Computer Simulation Using Particles, McGraw-Hill, New York

    Google Scholar 

  • Jones, M. E., Peter, W. K.: 1985, IEEE Trans. Nucl. Sci.Vol. no. NS-32, p. 1794.

    Article  ADS  Google Scholar 

  • Jones M. E., D. S. Lemons, R. J. Mason, V. A. Thomas, & D. Winske: 1996, “A Grid-Based Coulomb Collision Model for PIC Codes”, J. Comput. Phys.Vol. no. 123, in press.

    Google Scholar 

  • Jones, M. E., D. Winske, S. R. Goldman, R. A. Kopp, V. G. Rogatchev, S. A. Bel’kov, P. D. Gasparyan, G. V. Dolgoleva, N. V. Zhidkov, N. V. Ivanov, Yu. K Kochubej, G. F. Nasyrov, V. A. Pavlovskii, V. V. Smirnov, and Yu. A. Romanov: 1996, “An Adiabatic Fluid Electron Particle-in-Cell Code for Simulating Ion-Driven Parametric Instabilities”, Phys. Plasmas Vol. no. 3, pp. 1096–1108.

    Article  ADS  Google Scholar 

  • Jones, M. E.: 1995, “Multi-Level Concurrent Simulation: A White Paper”, unpublished

    Google Scholar 

  • Küppers, G., Salat, A., Wimmel, H. K.: 1973, “Macroscopic equilibria of relativistic electron beams in plasmas”, Plasma Phys.Vol. no. 15, 441

    Article  ADS  Google Scholar 

  • Melrose, D. B.: 1997, “Particle Acceleration and Nonthermal Radiation in Space Plasmas”, Astrophys. Space Sci.,This issue

    Google Scholar 

  • Miller, R. H., Combi, M. R.: 1995, Geophys. Res. Lett.Vol. no. 21, 1735

    Article  ADS  Google Scholar 

  • Nahin, P. J.: 1988, Oliver Heaviside: Sage in Solitude,IEEE Press, New York

    Google Scholar 

  • Peratt, A. L.: 1992, Physics of the Plasma Universe,Springer-Verlag, New York

    Book  Google Scholar 

  • Thomas, V.: 1995, “Multi-Level Concurrent Simulation”, Los Alamos National Laboratory Report LA-UR-95–3454

    Google Scholar 

  • Trubnikov, B. A.: 1958, “Plasma radiation in a magnetic field”, Soy. Phys. ‘Doklady’ Vol. no. 3, 136

    ADS  MATH  Google Scholar 

  • Vu, H. X.: 1996, “An Adiabatic Fluid Electron Particle-in-Cell Code for Simulating Ion-Driven Parametric Instabilities”, J. Comput. Phys.Vol. no. 123, in press.

    Google Scholar 

  • Witalis, E.: 1981, Phys. Rev. A Vo1. no. 24, 2758

    Article  ADS  Google Scholar 

  • Yonas, G., Poukey, J. W., Prestwich, K. R., Freeman, J. R., Toepfer, A. J., Clauser, J. J.: 1993, Nucl. Fusion Vol. no. 14, 731

    Article  ADS  Google Scholar 

  • Zimmerman, G. B., Kruer, W. L.: 1975, Comments Plasma Phys. Vol. no. 2, p. 51.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Peratt, A.L. (1997). Advances in Numerical Modeling of Astrophysical and Space Plasmas. In: De Gouveia Dal Pino, E.M., Peratt, A.L., Tanco, G.A.M., Chian, A.CL. (eds) Advanced Topics on Astrophysical and Space Plasmas. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5466-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5466-6_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6299-2

  • Online ISBN: 978-94-011-5466-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics