Skip to main content

The effects of HMG-CoA reductase inhibitors after kidney and heart transplantation: Lipid lowering and immunosuppression

  • Chapter
Book cover Late Graft Loss

Part of the book series: Transplantation and Clinical Immunology ((TRAC,volume 28))

  • 67 Accesses

Abstract

Hyperlipidemia is an important complication of solid-organ transplantation, affecting up to 80% of heart [1] and 75% of kidney [2] transplant recipients. The potential causes of hyperlipidemia in transplant recipients include dietary indiscretion secondary to prednisone therapy and an improved sense of well-being in the posttransplant period, genetic predisposition and side-effects of both prednisone and cyclosporin. The possible consequences of posttransplant hyperlipidemia include an increased risk for both cardiovascular morbidity and mortality and the development of chronic rejection. Kidney transplant recipients are at high risk for the development of ischemic heart disease, peripheral vascular disease and cerebrovascular disease [3]. It has been reported that 55% of deaths in renal transplant recipients with functioning grafts were cardiovascular in nature [4], In addition to the cardiovascular risk of posttransplant hyperlipidemia, there is growing evidence suggesting a correlation between high lipid levels and the development of chronic rejection (or allograft vasculopathy) after kidney [5–7] and heart [8] transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ballantyne CM, Radovancevic B, Farmer JA. Hyperlipidemia after heart transplantation: report of a 6-year experience, with treatment recommendations. J. Am. Coll. Cardiol. 1992; 19: 1315–1321.

    Article  PubMed  CAS  Google Scholar 

  2. Ong CS, Pollock CA, Caterson RJ, Mahony JF, Waugh DA, Ibels LS. Hyperlipidemia in renal transplant recipients: natural history and response to treatment. Medicine 1994; 73: 215–223.

    Article  PubMed  CAS  Google Scholar 

  3. Kasiske BL, Guijarro C, Massy ZA, Wiederkehr MR, Ma JZ. Cardiovascular disease after renal transplantation. J. Am. Soc. Nephrol. 1995; 7: 158–165.

    Google Scholar 

  4. United States Renal Data System. USRDS 1994; Annual Data Report. Bethesda, MD: The National Institutes of Health: National Institutes of Diabetes and Digestive and Kidney Diseases; 1994.

    Google Scholar 

  5. Dimeny E, Fellström B, Larsson E, Tufveson G, Lithell H. Hyperlipoproteinemia in renal transplant recipients: is there a linkage with chronic vascular rejection? Transplant. Proc. 1993; 25: 2065–2066.

    PubMed  CAS  Google Scholar 

  6. Dimeny E, Fellström B, Larsson E, Tufveson G, Lithell H. Chronic vascular rejection and hyperlipoproteinemia in renal transplant patients. Clin. Transplant. 1993; 7: 482–490.

    Google Scholar 

  7. Isoniemi H, Nurminen M, Tikkanen MJ et al. Risk factors predicting chronic rejection of renal allografts. Transplantation 1994; 57: 68–72.

    Article  PubMed  CAS  Google Scholar 

  8. Johnson MR. Transplant coronary disease: nonimmunologic risk factors. J. Heart Lung Transplant. 1992; 11: S124–S132.

    PubMed  CAS  Google Scholar 

  9. Kobashigawa JA, Murphy FL, Stevenson LW et al. Low-dose lovastatin safely lowers cholesterol after cardiac transplantation. Circulation 1990; 82 (Suppl 4): S281–S283.

    Google Scholar 

  10. Vanhaecke J, Van Cleemput J, Van Lierde J, Daenen W, De Geest H. Safety and efficacy of low dose simvastatin in cardiac transplant recipients treated with cyclosporine. Transplantation 1994; 58: 42–45.

    PubMed  CAS  Google Scholar 

  11. Kobashigawa JA, Katznelson S, Laks H et al. Impact of pravastatin on outcomes after cardiac transplantation. N. Engl. J. Med. 1995; 333: 621–627.

    Article  PubMed  CAS  Google Scholar 

  12. Katznelson S, Wilkinson AH, Kobashigawa JA et al. The effect of pravastatin on acute rejection after kidney transplantation — a pilot study. Transplantation 1996; 61: 1469–1474.

    Article  PubMed  CAS  Google Scholar 

  13. Cooksey G, Robbins RA, Blarney RW. Natural killer cells in renal allograft rejection. Br. J. Surg. 1984; 71: 874–877.

    Article  PubMed  CAS  Google Scholar 

  14. Lefkowitz M, Jorkasky D, Korwbluth J. Increase in natural killer activity in cyclosporin-treated renal allograft recipients during rejection. Hum. Immunol. 1987; 19: 139–149.

    Article  PubMed  CAS  Google Scholar 

  15. Lewis CE, McGee JU. The natural killer cell. New York: Oxford University Press, 1992: 175–203.

    Google Scholar 

  16. Wenke K, Thiery J, Meiser BM, Arndtzn N, Seidel D, Reichart B. Reduction of graft vessel disease after heart transplantation by maximal treatment of hypercholesterolemia after heart transplantation. Am. Soc. Transplant. Phys. (Abstract book) 1994: 83.

    Google Scholar 

  17. Goldstein JL, Brown MS. Regulation of the mevalonate pathway. Nature 1990 343: 425–430.

    Article  PubMed  CAS  Google Scholar 

  18. Sinensky M, Beck LA, Leonard S. Differential inhibitory effects of lovastatin on protein isoprenylation and sterol synthesis. J. Biol. Chem. 1990; 265(32): 19937–19941.

    PubMed  CAS  Google Scholar 

  19. Cutts JL, Bankhurst AD. Reversal of lovastatin-mediated inhibition of natural killer cell cytotoxicity by interleukin 2. J. Cell. Physiol. 1992; 145: 244–252.

    Article  Google Scholar 

  20. Cutts JL, Scallen TJ, Watson J, Bankhurst AD. Role of mevalonic acid in the regulation of natural killer cell cytotoxicity. J. Cell. Physiol. 1989; 139: 550.

    Article  PubMed  CAS  Google Scholar 

  21. Chakrabarti R, Engleman EG. Interrelationships between mevalonate metabolism and the mitogenic signaling pathway in T lymphocyte proliferation. J. Biol. Chem. 1991; 266 (19): 12216.

    PubMed  Google Scholar 

  22. Cutts JL, Bankurst AD. Suppression of lymphoid cell function in vitro by inhibition of 3-hydroxy-3-methylglutaryl enzyme A reductase by lovastatin. Int. J. Immunopharmacol. 1989; 11(8): 863.

    Article  PubMed  CAS  Google Scholar 

  23. Kreuzer J, Bader J, Jahn L. Chemotaxis of the monocyte line U937: dependence on cholesterol and early mevalonate pathway products. Atherosclerosis 1991; 90: 203.

    Article  PubMed  CAS  Google Scholar 

  24. Fields PE, Gajewski TF, Fitch FW. Blocked ras activation in anergic CD4+ T cells. Science 1996; 271: 1276–1278.

    Article  PubMed  CAS  Google Scholar 

  25. Yoshimura N, Oka T, Okamoto M, Ohmori Y. The effects of pravastatin on hyperlipidemia in renal transplant recipients. Transplantation 1992; 53: 94–99.

    Article  PubMed  CAS  Google Scholar 

  26. Cheung AK, De Vault GA Jr, Gregory MC. A prospective study on the treatment of hypercholesterolemia with lovastatin in renal transplant patients receiving cyclosporin. J. Am. Soc. Nephrol. 1993; 3: 1884–1891.

    PubMed  CAS  Google Scholar 

  27. Kasiske BL, Tororice KL, Heim-Duthoy KL, Goryance JM, Rao KV. Lovastatin treatment of hypercholesterolemia in renal transplant recipients. Transplantation 1990; 49: 95–100.

    Article  PubMed  CAS  Google Scholar 

  28. Meiser BM, Wenke K, Thiery J et al. Simvastatin decreases accelerated graft vessel disease after heart transplantation in an animal model. Transplant. Proc. 1993; 25: 2077–2079.

    PubMed  CAS  Google Scholar 

  29. Ballantyne CM. Lipids and cyclosporin A. Transplant. Immunol. Lett. 1992; (3): 4–19.

    Google Scholar 

  30. Regazzi MB, Iacona I, Campana C, Gavazzi A, Vigano M, Perani G. Altered disposition of pravastatin following concomitant drug therapy with cyclosporin A in transplant recipients. Transplant. Proc. 1993; 25: 2732–2734.

    PubMed  CAS  Google Scholar 

  31. McPherson R, Tsoukas C, Baines MG et al. Effects of lovastatin on natural killer cell function and other immunological parameters in man. J. Clin. Immunol. 1993; 13(6): 439–444.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Katznelson, S., Kobashigawa, J.A. (1997). The effects of HMG-CoA reductase inhibitors after kidney and heart transplantation: Lipid lowering and immunosuppression. In: Touraine, J.L., Traeger, J., Bétuel, H., Dubernard, J.M., Revillard, J.P., Dupuy, C. (eds) Late Graft Loss. Transplantation and Clinical Immunology, vol 28. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5434-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5434-5_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6286-2

  • Online ISBN: 978-94-011-5434-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics