Skip to main content

Mechanical Models as Priors in Bayesian Tomographic Reconstruction

  • Conference paper
Maximum Entropy and Bayesian Methods

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 79))

Abstract

We introduce a new prior—the weak plate—to Bayesian tomographic reconstruction. The weak plate captures the piecewise ramplike spatial structure evident in primate autoradiograph source distributions. The weak plate is a part of a family of “mechanical” models—weak membrane (1st order), weak plate (2nd order), and weak quadric (3rd order)—in which a class of smoothness constraints derived from properties of ideal physical materials are used as models in the associated reconstruction problem. Since “weak” priors generate local minimain MAP estimation, we have designed novel Generalized Expectation-Maximization deterministic annealing algorithms to alleviate this problem. Our simulation studies qualitatively demonstrate the improvements over the weak membrane and maximum likelihood reconstructions.

This work was supported by NIH R01-NS32879.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Shepp and Y. Vardi, “Maximum likelihood reconstruction for emission tomography,” IEEE Trans. Med. Imag., 1, pp. 113–122, 1982.

    Article  Google Scholar 

  2. S. Geman, E. Bienenstock, and R. Doursat, “Neural networks and the bias/variance dilemma,” Neural Computation, 4, pp. 1–58, 1992.

    Article  Google Scholar 

  3. S. Geman and D. E. McClure, “Statistical methods for tomographic image reconstruction,” Bulletin of the International Statistical Institute, LII-4, pp. 5–21, 1987.

    MathSciNet  Google Scholar 

  4. T. Hebert and R. Leahy, “A generalized EM algorithm for 3-D Bayesian reconstruction from Poisson data using Gibbs priors,” IEEE Trans. Med. Imag., 8, pp. 194–202, June 1989.

    Article  Google Scholar 

  5. G. Gindi, M. Lee, A. Rangarajan, and G. Zubal, “Bayesian reconstruction of functional images using anatomical information as priors,” IEEE Trans. Med. Imag., 12, pp. 670–680, Dec. 1993.

    Article  Google Scholar 

  6. G. Gindi, A. Rangarajan, M. Lee, P. J. Hong, and G. Zubal, “Bayesian reconstruction for emission tomography via deterministic annealing,” in Info. Proc. Med. Imag., H. Barrett and A. Gmitro, eds., pp. 322–338, Springer-Verlag, 1993.

    Google Scholar 

  7. G. Gindi and A. Rangarajan, “What can SPECT learn from autoradiography?,” in Proc. Nucl. Sci. Symp./Med. Imag. Conf., vol. 4, pp. 1715–1719, IEEE Press, 1994.

    Google Scholar 

  8. D. Geman and G. Reynolds, “Constrained restoration and the recovery of discontinuities,” IEEE Trans. Patt. Anal. Mach. Intell., 14, pp. 367–383, March 1992.

    Article  Google Scholar 

  9. S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images,” IEEE Trans. Patt. Anal. Mach. Intell., 6, pp. 721–741, Nov. 1984.

    Article  MATH  Google Scholar 

  10. A. Blake and A. Zisserman, Visual Reconstruction, MIT Press, Cambridge, MA, 1987.

    Google Scholar 

  11. A. Rangarajan and R. Chellappa, “Markov random field models in image processing,” in The Handbook of Brain Theory and Neural Networks, M. A. Arbib, ed., pp. 564–567, MIT Press, 1995.

    Google Scholar 

  12. I. Elfadel, “Convex potentials and their conjugates in analog mean-field optimization,” Neural Computation, 7, pp. 1079–1104, Sept. 1995.

    Article  Google Scholar 

  13. A. Rangarajan and R. Chellappa, “A continuation method for image estimation using the adiabatic approximation,” in Markov Random Fields: Theory and Application, R. Chellappa and A. K. Jain, eds., pp. 69–91, Academic Press, 1993.

    Google Scholar 

  14. D. Geiger and F. Girosi, “Parallel and deterministic algorithms from MRFs: Surface reconstruction,” IEEE Trans. Patt. Anal. Mach. Intell., 13, pp. 401–412, May 1991.

    Article  Google Scholar 

  15. R. Hathaway, “Another interpretation of the EM algorithm for mixture distributions,” Stat. and Prob. Lett, 4, pp. 53–56, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  16. S.-J. Lee, A. Rangarajan, and G. Gindi, “Bayesian image reconstruction in SPECT using higher-order mechanical models as priors,” IEEE Trans. Med. Imag., 14, pp. 669–680, Dec. 1995.

    Article  Google Scholar 

  17. J. Llacer and E. Veklerov, “Feasible images and practical stopping rules for iterative algorithms in emission tomography,” IEEE Trans. Med. Imag., 8, pp. 186–193,1989.

    Article  Google Scholar 

  18. S.-J. Lee, G. Gindi, G. Zubal, and A. Rangarajan, “Using ground-truth data to design priors in Bayesian SPECT reconstruction,” in Info. Proc. Med. Imag., Y. Bizais, C. Barillot, and R. D. Paola, eds., pp. 27–38, Kluwer Acad. Pub., 1995.

    Google Scholar 

  19. Z. Zhou, R. M. Leahy, and E. U. Mumcuoglu, “Maximum likelihood hyperparameter estimation for Gibbs priors with applications to PET,” in Info. Proc. Med. Imag., Y. Bizais, C. Barillot, and R. D. Paola, eds., pp. 39–51, Kluwer Acad. Pub., 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Rangarajan, A., Lee, SJ., Gindi, G. (1996). Mechanical Models as Priors in Bayesian Tomographic Reconstruction. In: Hanson, K.M., Silver, R.N. (eds) Maximum Entropy and Bayesian Methods. Fundamental Theories of Physics, vol 79. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5430-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5430-7_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6284-8

  • Online ISBN: 978-94-011-5430-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics