Skip to main content

Continuum Models for Bayesian Image Matching

  • Conference paper
Maximum Entropy and Bayesian Methods

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 79))

Abstract

The task of determining the mapping between a pair of images is called image matching and is fundamental in image processing. Prior information is essential to the inference of the mapping because the image features on which matching is based are sparsely distributed and, consequently, underconstrain the problem. In this paper, we describe the Bayesian approach to image matching and introduce suitable priors based on idealized models of continua.

This work was supported in part by the U.S.P.H.S. under grant l-ROl-NS-33662-OlAl.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Brown, “A survey of image registration techniques,” ACM Comput. Surveys, 24, pp. 325–376, 1992.

    Article  Google Scholar 

  2. R. Bajcsy, M. Reivich, and S. Kovacic, Evaluation of registration of PET images with CT images. Technical Report MS-CIS-88-89, Department of Computer and Information Science, University of Pennsylvania, Philadelphia, 1988.

    Google Scholar 

  3. J. Besag, “Towards bayesian image analysis” J. Appl. Stat., 16, pp. 395–407, 19

    Article  Google Scholar 

  4. U. Grenander, Tutorial in Pattern Theory. Division of Applied Mathematics, Brown University, 1983.

    Google Scholar 

  5. U. Grenander, Y. Chow, and D. M. Keenan, Hands: A Pattern Theoretic Study of Biological Shapes. Springer-Verlag, New York, 1991.

    Google Scholar 

  6. C. Broit, Optimal registration of deformed images. Ph.D. Thesis, Department of Computer and Information Science, University of Pennsylvania, Philadelphia, 1981.

    Google Scholar 

  7. J. O. Berger, Statistical Decision Theory and Bayesian Analysis. Springer-Verlag, New York, 1985.

    MATH  Google Scholar 

  8. J. C. Gee, D. R. Haynor, M. Reivich, and R. Bajcsy, “Finite element approach to warping of brain images,”in Medical Imaging 1994: Image Processing, M. H. Loew, ed., SPIE, Bellingham, 1994.

    Google Scholar 

  9. J. C. Gee, L. Le Briquer, C. Barillot, D. R. Haynor, and R. Bajcsy, “Bayesian approach to the brain image matching problem,”in Medical Imaging 1995: Image Processing, M. H. Loew, ed., SPIE, Beilingham, 1995.

    Google Scholar 

  10. J. C. Gee, L. Le Briquer, C. Barillot, and D. R. Haynor, “Probabilistic matching of brain images,”in Information Processing in Medical Imaging, Y. Bizais, C. Barillot, and R. D. Paola, eds., pp. 113–125, Kluwer Academic, Dordrecht, 1995.

    Google Scholar 

  11. J. Besag, P. Green, D. Higdon, and K. Mengersen, “Bayesian computation and stochastic systems,” Stat. Sci., 10,(1), pp. 3–66, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  12. T. Poggio, V. Torre, and C. Koch, “Computational vision and regularization theory,” Na-ture, 317,(26), pp. 314–319, 1985.

    Google Scholar 

  13. M. Bertero, T. A. Poggio, and V. Torre, “Ill-posed problems in early vision,” Proc. IEEE, 76,(8), pp. 869–889, 1988.

    Article  Google Scholar 

  14. D. W. Thompson, On Growth and Form. Cambridge University Press, Cambridge, 1917.

    Book  Google Scholar 

  15. J. D. Murray, Mathematical Biology. Springer-Verlag, Berlin, 1993.

    Book  MATH  Google Scholar 

  16. F. J. Rohlf and F. L. Bookstein, Proc. Michigan Morphometrics Workshop. The University of Michigan Museum of Zoology, Ann Arbor, 1990.

    Google Scholar 

  17. A. N. Tikhonov and V. A. Arsenin, Solutions of Ill-Posed Problems. Winston, Washington, DC, 1977.

    MATH  Google Scholar 

  18. W. E. L. Grimson, From images to surfaces: a computational study of the human early visual system. MIT Press, Cambridge, 1981.

    Google Scholar 

  19. S. Geman and D. Geman, “Stochastic relaxation, gibbs distribution, and the bayesian restoration of images,” IEEE Trans. Pattern Anal. Machine Intell., 6, pp. 721–741, 1984.

    Article  MATH  Google Scholar 

  20. J. Marroquin, S. Mitter, and T. Poggio, “Probabilistic solution of ill-posed problems in computational vision,” J. Amer. Stat. Assoc, 82,(397), pp. 76–89, 1987.

    Article  MATH  Google Scholar 

  21. R. Szeliski, Bayesian Modeling of Uncertainty in Low-level Vision. Kluwer Academic, Norwell, 1989.

    Book  MATH  Google Scholar 

  22. L. E. Malvern, Introduction to the Mechanics of a Continuous Medium. Prentice-Hall, Englewood Cliffs, 1969.

    Google Scholar 

  23. K.-J. Bathe, Finite Element Procedures in Engineering Analysis. Prentice-Hall, Englewood Cliffs, 1982.

    Google Scholar 

  24. D. Marr, Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. W. H. Freeman, San Francisco, 1982.

    Google Scholar 

  25. D. Terzopoulos, “Image analysis using multigrid relaxation methods,” IEEE Trans. Pattern Anal. Machine Intell., 8, pp. 129–139, 1986.

    Article  Google Scholar 

  26. E. P. Simoncelli, Distributed Representation and Analysis of Visual Motion. Vision and Modeling Group Technical Report 209, MIT Media Laboratory, 1993.

    Google Scholar 

  27. R. Bajcsy and S. Kovacic, “Multiresolution elastic matching,” Comput. Vision, Graphics, Image Process., 46, pp. 1–21, 1989.

    Article  Google Scholar 

  28. G. E. Christensen, Deformable Shape Models for Anatomy. Ph.D. Thesis, Department of Electrical Engineering, Washington University, St. Louis, 1994.

    Google Scholar 

  29. M. J. Black and A. Rangarajan, “On the unification of line processes, outlier rejection, and robust statistics with applications in early vision,” Int. J. Comput. Vision, to appear.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Gee, J.C., Peralta, P.D. (1996). Continuum Models for Bayesian Image Matching. In: Hanson, K.M., Silver, R.N. (eds) Maximum Entropy and Bayesian Methods. Fundamental Theories of Physics, vol 79. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5430-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5430-7_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6284-8

  • Online ISBN: 978-94-011-5430-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics