Skip to main content

Abstract

Pharmacological agents have played only a minor role in clinical organ preservation. Several decades of intensive research on the pathophysiology of hypothermic ischaemia led to the introduction of numerous pharmacological agents that were shown to ameliorate this condition, but few of these promising agents are currently used in clinical organ procurement. Research efforts have been directed primarily toward the development of flush solutions. The primary research effort was to overcome cellular swelling. Both Collins’ solution [1] and the University of Wisconsin solution [2] contain impermeant sugars and specific electrolytes designed to combat tissue swelling noted during cold storage. Most flush solutions also contain a mixture of additives designed to interfere with various ischaemic processes. The use of these agents remains empirical and the significance of each component has not been ascertained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Collins GM, Bravo-Sugerman MB, Terasaki P. Kidney preservation for transportation. Lancet 1969; 2: 1219.

    Article  PubMed  CAS  Google Scholar 

  2. Kalayoglu M, Stratta RJ, Sollinger HW et al. Clinical results liver transplantation using UW solution for extended preservation. Transplant Proc. 1989; 21: 1342.

    PubMed  CAS  Google Scholar 

  3. Carafoli E. Membrane transport and the regulation of the cell calcium levels. In: Cowley PA, Trump BF (eds) Pathophysiology of Shock, Anoxia, and Ischemia. Williams and Wilkins, Baltimore 1982. pp. 95.

    Google Scholar 

  4. Cheung WY. Cyclic 3’5’-nucleotide phosphodiesterase: pronounced stimulation by snake venom. Biochem Biophys Res Commun 1967; 29: 478.

    Article  PubMed  CAS  Google Scholar 

  5. Cheung WY. Calmodulin plays a pivotal role in cellular regulation. Science 1980; 207: 19.

    Article  PubMed  CAS  Google Scholar 

  6. Richman PG, Klee CB. Specific perturbation by Ca2+ of tyrosyl residue 138 of calmodulin. J Biol Chem 1979; 254: 5372.

    PubMed  CAS  Google Scholar 

  7. Anderson JM, Gimbrone MA Jr, Alexander RW. Angiotensin II stimulates phosphorylation of the myosin light chain in cultured vascular smooth muscle cells. J Biol Chem 1981; 256: 4693.

    PubMed  CAS  Google Scholar 

  8. Carafoli E, Crompton M. The regulation of intracellular calcium. Curr Topics Membrane Transplant 1978; 10: 151.

    Article  CAS  Google Scholar 

  9. Schatzmann HJ. Dependence on calcium concentration and stoichiometry of the calcium pump in human red cells. J Physiol 1973; 235: 551.

    PubMed  CAS  Google Scholar 

  10. Gmaj P, Murer H, Kinne R. Calcium ion transport across plasma membranes isolated from rat kidney cortex. Biochem J 1979; 178: 549.

    PubMed  CAS  Google Scholar 

  11. Judah JD, Ahmed K, McLean AEM. Possible role of ion shifts in liver injury. In: de Renck AVS, Knight J (eds), Ciba Foundation Symposium on Cellular Injury. Little, Brown & Co., Boston, 1964; pp. 187–205.

    Google Scholar 

  12. Trump BF, Mergner WJ, Kahng MW, Saladino AJ. Studies on the subcellular pathophysiology of ischemia. Circulation 1976; 53 (suppl. 1): 17.

    Google Scholar 

  13. Osornior AR, Berezesky IK, Mergner WJ, Trump BF. Mitochondria] membrane fusions in experimental myocardial infarction. Fed Proc 1980; 39: 634.

    Google Scholar 

  14. Sun ST, Day EP, Ho JT. Temperature dependence of calcium-induced fusion of sonicated phosphatidylserine vesicles. Proc Natl Acad Sei USA 1978; 75: 4325.

    Article  CAS  Google Scholar 

  15. Trump BF, Berezesky IK, Cowley RA. The cellular and sub-cellular characteristics of acute and chronic injury with emphasis on the role of calcium. In: Cowley RA, Trump BF (eds), Pathophysiology of Shock, Anoxia, and Ischemia. Williams & Wilkins Co., Baltimore 1982; p. 6.

    Google Scholar 

  16. Wakabayashi T, Green DE. Membrane fusion in mitochondria. I. Ultrastructural basis for fusion. J Electron Microsc 1977; 26: 305.

    CAS  Google Scholar 

  17. Southard JH, Hoffmann RM, Belzer FO. Mechanism of loss of mitochondrial functions during hypothermic storage of kidneys. In: Pegg DE, Jacobsen IA, Hala NA (eds), Organ Preservation: Basic and Applied Aspects. MTP Press, Boston 1982; pp. 127.

    Google Scholar 

  18. Southard JH, Senzig KA, Hoffmann RM, Belzer FO. Toxicity of oxygen to mitochondrial respiratory act_vity in hypothermically perfused canine kidneys. Transplantation 1980; 29: 459.

    Article  PubMed  CAS  Google Scholar 

  19. Shug AL, Shrago E, Bittar N, Folts JD, Koke JR. Acyl-CoA inhibition of adenine nucleotide translocation in ischemic myocardium. Am. J Physiol 1975; 228: 689.

    PubMed  CAS  Google Scholar 

  20. Mittnaeht S, Jr, Sherman SC, Farber JL. Reversal of ischemic mitochondrial. dysfunction. J Biol Chem 1979; 254: 9871.

    Google Scholar 

  21. Feinberg H. Energetics and mitochondria. in: Pegg DE, Jacobsen IA, Halasz NA (eds), Organ Preservation: Basic and Applied Aspects. MTP Press Boston, 1982; p. 3.

    Google Scholar 

  22. Welsh MJ, Dedman JR, Brinkley BR, Means AR. Tubulin and calmodulin. Effects of microtubule and inicrofilament inhibitors on localization in the mitotic apparatus. J Cel Biol 1979; 81: 624

    Article  CAS  Google Scholar 

  23. Marcum JM, Dedman JR, Brinkley BR, Means AR. Control of microtubule assembly-disassembly by calcitm-dependent regulator protein. Proc Natl Acad Sci USA 1978; 75: 3771.

    Article  PubMed  CAS  Google Scholar 

  24. Donohoe JF, Venkatachalam MA, Bernard DB, Levinsky NG. Tubular leakage and obstruction after renal ischemia: Structural-functional correlations. Kidney Int 1978: 13: 208.

    Article  PubMed  CAS  Google Scholar 

  25. Loewenstein WR, Rose B. Calcium in (junctional) intracellular communication and a thought on its behavior in intracellular communication. Ann NY Acad Sci 1978; 307: 28. 5.

    Google Scholar 

  26. Diethelm AG, Devries BS, Hartley MW, Phillips. SJ. The noreflow phenomenon after canine renal preservation with medium 199. J Surg Res 1975; 19: 55.

    Article  PubMed  CAS  Google Scholar 

  27. Dawidson I, Rooth P, Lu C, Sagalowsky A et al. Verapamil improves the outcome after cadaver renal transplantation. J Am Soc Nephrol 1991; 2: 983–90.

    PubMed  CAS  Google Scholar 

  28. Sobh MA, Shehab el-Din AB, Moustafa FE, el-Fat MA et el. A prospective randomized study of the protecti-e effut of verapamil on ischemic renal injury in renal allotransplants. Transplant Proc 1989; 21: 1230–2.

    PubMed  CAS  Google Scholar 

  29. Elkadi HK, Mardan AH, Nghiem DD, Southard JH. The role of calcium antagonists in the management of renal warm ischemia. J Urol 1989; 141: 974–80.

    PubMed  CAS  Google Scholar 

  30. Wagner K, Albrecht S, Neumayer HH. Prevention of post-transplant acute tubular necrosis by the calciurr antagonist diltiazem: a prospective randomized study. Atr J Nephrol 1987; 7: 287–91.

    Article  CAS  Google Scholar 

  31. Puig JM, Lloveras J, Oliveras A, Costa C, Aubia J Masrarnon J. Usefulness of diltiazem in reducing the incidence of acute tubular necrosis in Euro-Collins-preserved cadaveric renal grafts. Transpl Proc 1991; 23: 2368–9.

    CAS  Google Scholar 

  32. Alcaraz A, Oppenheimer F, Talbot-Wright R, Fernandez-Cruz L, Manalich M, Garcia-Pages E, Cetina A, Vendrell 1R, Carretero P. Effect of diltiazem in the prevention of acute tubular necrosis, acute rejection, and cyclosporine levels. Transpl Proc 1991; 23: 2383–4.

    CAS  Google Scholar 

  33. Pirsch JD, D’Alessandro AM, Roecker EB, Knechtle SJ et al. A controlled, double-blind, randomized trial of veripamil and cyclosporine in cadaver renal transplant patients. Ain J Kidney Dis 1993; 21: 189–95.

    CAS  Google Scholar 

  34. Koller J, Wieser C, Kornberger R, Furtwangler W.et al. Does systemic pretreatment with verapamil prevent aci te tubular necrosis after renal transplantation? Transplant Proc 1988: 20: 905–6.

    PubMed  CAS  Google Scholar 

  35. Hoff RP, Vuorela HJ, Neumann P. PY 108–068, a new, potent, and selective inhibitor of calcium-induced contraction of rabbit aortic rings. J Cardiovasc Pharmacol 1982; 4: 344.

    Article  Google Scholar 

  36. Weiss B, Prozialeck W, Cimino M, et al. Pharmacological regulation of calmodulin. Ann NY Acad Sci 1980; 356: 319.

    Article  PubMed  CAS  Google Scholar 

  37. Levin R, Weiss B. Specificity of binding of trifluoperazine to the calcium dependent activator of phosphodiesterase and to a series of other calcium binding proteins. Biochim Biophys Acta 1981; 540: 197.

    Article  Google Scholar 

  38. Osborn M, Weber K. Damage of cellular functions by trifluoperazine, a calmodulin specific drug. Exp Cell Res 1981; 130: 484.

    Article  Google Scholar 

  39. LaPorte DE, Weirman BM, Strom DR. Calcium induced exposure of a hydrophobic surface on almodulin. Biochemistry 1980; 19: 3814.

    Article  PubMed  CAS  Google Scholar 

  40. Asari H, Anaise D, Bachvaroff RJ et al. Preservation techniques for organ transplantation: I. Protective effects of calmodulin inhibitors in cold-preserved kidneys. Transplantation 1984; 37: 113.

    Article  PubMed  CAS  Google Scholar 

  41. Anaise D, Sato K, Atkins H et al. Scintigraphie evaluation of the viability of cold-preserved kidneys before transplantation. J Nucl Med 1984; 25: 1304.

    PubMed  CAS  Google Scholar 

  42. McAnulty JE, Ploeg RJ, Southard JH, Belzer FO. Successful five day perfusion preservation of the canine kidney. Transplantation 1989; 47: 37–41.

    Article  PubMed  CAS  Google Scholar 

  43. McAnulty JF, Vreugdenhil PK, Southard JH, Belzer FO. Improved survival of kidneys preserved for seven days with a phospholipase inhibitor.

    Google Scholar 

  44. Tokunaga Y, Wicomb WN, Concepcion W, Nakazato P, Cox K, Esquivel CO, Collins GM. Improved rat liver preservation using chlorpromazine in a new sodium lactobionate sucrose solution. Transpl Proc 1991; 23: 660–1.

    CAS  Google Scholar 

  45. Collins GM, Wicomb WN, Warren R, Wong L, Bry WI, Feduska NJ, Salvatierra O. Canine and cadaver kidney preservation with sodium lactobionate sucrose solution. Transpl Proc 1993; 25: 1588–90.

    CAS  Google Scholar 

  46. Ames A, Wright RL, Kowada M, Thurston JM, Majno G. Cerebral ischemia II, the no reflow phenomenon. Am J Pathol 1968; 52: 437.

    PubMed  Google Scholar 

  47. McCord JM. Oxygen-derived free radicals in post-ischemic tissue injuiry. N Engl J Med 1985; 312: 159.

    Article  PubMed  CAS  Google Scholar 

  48. Roy RS, McCord JM. Superoxide and ischemia: conversion of xanthine dehydrogenase to xanthine oxidase. In: Greenwald R, Cohen G (eds), Oxy Radicals and Their Scavenger Systems. Vol. 2. Cellular and Molecular Aspects. Elsevier, New York 1983; pp. 145–53.

    Google Scholar 

  49. Della Corte E, Stirpe F. The regulation of rat liver xanthine oxidase. Involvement of thiol groups in the conversion of the enzyme activity from dchydrogenase (Type D) into oxidase (Type O) and purification of the enzyme. Biochem J 1972; pp. 126: 739.

    Google Scholar 

  50. Hansson R, Gustaysson B, Jonsson O et al. Effect of xanthine oxidase inhibition on renal circulation after ischemia. Transplant Proc 1982; 14: 51.

    CAS  Google Scholar 

  51. Ouriel K, Smedira NG, Ricotta JJ. Protection of the kidney after temporary ischemia: free radical scavengers. J Vasc Surg 1985; 2: 49.

    PubMed  CAS  Google Scholar 

  52. Palter MS, Hoidal JR, Ferris TF. Oxygen free radicals in ischemic acute renal failure in the rat. J Clin Invest 1984; 74: 1156.

    Article  Google Scholar 

  53. Stuart RS, Baumgartner WA, Borkon AM el al. Five hour hypothermic lung preservation with oxygen free-radical scavengers. Transplant Proc 1985: 17: 1454.

    CAS  Google Scholar 

  54. Leahy AL, Wait RB. Verapamil. superoxide dismutase, and catalase in post-ischemia renal failure. Surg Forum 1984; 35: 24.

    CAS  Google Scholar 

  55. Koyama I, Bulkley GB, Williams GM. Im MJ. The role of oxygen free radicals in mediating the reperfusion injury of cold-preserved ischemic kidneys. Transplantation 1985; 40: 590.

    Article  PubMed  CAS  Google Scholar 

  56. Toledo-Pereyra LH. Simmons RL. Olson LC, Najarian JS. Clinical effect of allopurinol on preserved kidneys: a randomized double-blind study. Ann Surg 1977: 185: 128–31.

    Article  PubMed  CAS  Google Scholar 

  57. Hoshino T, Maley WR. Bulkley GB, Williams GM. Ablation of free radical-mediated reperfusion injury for the salvage of kidneys taken tram non-heartheating donors. A quantitative evaluation of the proportion of injury caused by reperfusion following periods of warm. cold. and combined warm and cold ischemia. Transplantation 1988: 45: 284–9.

    Article  PubMed  CAS  Google Scholar 

  58. Bry WI, Collins GM. Halasz NA. Jetliner M. Improved function of perfused rabbit kidneys by prevention of oxidative injury. Transplantation 1984; 38: 579.

    Article  PubMed  CAS  Google Scholar 

  59. Green CJ, Healing G, I,unec J. Fuller BJ. Simpkin S. Evidence of free-radical-induced damage in rabbit kidneys after simple hypothermic preservation and autotransplantation. Transplantation 1986; 41: 161.

    CAS  Google Scholar 

  60. Southard JH, Marsh DC. McAnulty JF, Belzer FO. Oxygen free radical damage in organ preservation: activity of super-oxide dismutase and xanthine oxidase. Transplant Proc 1987; In Press.

    Google Scholar 

  61. Bennett JF, Bry WI, Collins GM, Halasz NA. The effects of oxygen free radicals on the preserved kidney. Cryobiology 1987; 24: 264–9.

    Article  PubMed  CAS  Google Scholar 

  62. Boudjema K. Southard JH. Belzer FO, Jaeck D, Cinqualbre J. Changes in glutathione levels in the renal cortex of dogs during preservation by continuous hypothermic pulsatile perfusion. Chirurgie 1991: 117: 575–82.

    Google Scholar 

  63. Freer RJ. Calcium and angiotensin tachyphylasix in rate uterine smooth muscle. Am J Physiol 1975; 228: 1423.

    PubMed  CAS  Google Scholar 

  64. Peach MJ. Molecular actions of angiotensin. Biochem Pharmacol 1981; 30: 2745.

    Google Scholar 

  65. Adelstein RS. Calmodulin and the regulation of the actin-myosin interaction in smooth muscle and non-muscle cells. Cell 1982: 30: 349.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Anaise, D. (1997). Pharmacological agents in organ preservation. In: Collins, G.M., Dubernard, J.M., Land, W., Persijn, G.G. (eds) Procurement, Preservation and Allocation of Vascularized Organs. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5422-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5422-2_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6280-0

  • Online ISBN: 978-94-011-5422-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics